如圖,直線AB、CD相交于點O,∠AOD=30°,半徑為1cm的⊙P的圓心在射線OA上,且與點O的距離為6cm.如果⊙P以1cm/s的速度沿由A向B的方向移動,那么( )秒鐘后⊙P與直線CD相切.

A.4
B.8
C.4或6
D.4或8
【答案】分析:由題意判定CD是圓的切線,從其性質(zhì)在△P1EO中求得OP1,從而求得.
解答:解:①由題意CD與圓P1相切于點E,
∴P1E⊥CD
又∵∠AOD=30°,r=1cm
∴在△OEP1中OP1=2cm
又∵OP=6cm
∴P1P=4cm
∴圓P到達圓P1需要時間為:4÷1=4(秒),
②當圓心P在直線CD的右側(cè)時,
PP2=6+2=8cm,
∴圓P到達圓P2需要時間為:8÷1=8(秒),
綜上可知:⊙P與直線CD相切時,時間為4或8秒鐘,
故選D.
點評:本題考查了切線的判定和性質(zhì),從切線入手從而解得.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

21、如圖,直線AB、CD、EF都經(jīng)過點O,且AB⊥CD,∠COE=35°,求∠DOF、∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直線AB與CD相交于點O,OE⊥AB,OF⊥CD.
(1)圖中∠AOF的余角是
 
(把符合條件的角都填出來).
(2)圖中除直角相等外,還有相等的角,請寫出三對:
 
;②
 
;③
 

(3)①如果∠AOD=140°.那么根據(jù)
 
,可得∠BOC=
 
度.
②如果∠EOF=
15
∠AOD
,求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、完成推理填空:如圖:直線AB、CD被EF所截,若已知AB∥CD,
求證:∠1=∠2.
請你認真完成下面填空.
證明:∵AB∥CD    (已知),
∴∠1=∠
3
( 兩直線平行,
同位角相等
 )
又∵∠2=∠3,(
對頂角相等
 )
∴∠1=∠2 (
等量代換
 ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線AB、CD、EF相交于點O,AB⊥CD,OG平分∠AOE,∠FOD=24°,∠COG的度數(shù)=
33°
33°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線AB,CD相交于O點,EO⊥CD,垂足為O點,若∠BOE=50°,求∠AOD的度數(shù).

查看答案和解析>>

同步練習冊答案