【題目】如圖,在正方形ABCD中,△ABE和△CDF為直角三角形,∠AEB=CFD=90°,AE=CF=5,BE=DF=12,則EF的長(zhǎng)是( )

A. 7 B. 8 C. 7 D. 7

【答案】A

【解析】

由正方形的性質(zhì)得出∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,由SSS證明△ABE≌△CDF,得出∠ABE=∠CDF,證出∠ABE=∠DAG=∠CDF=∠BCH,由AAS證明△ABE≌△ADG,得出AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,得出EG=GF=FH=EF=7,證出四邊形EGFH是正方形,即可得出結(jié)果.

如圖所示:


∵四邊形ABCD是正方形,
∴∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,
∴∠BAE+∠DAG=90°,
在△ABE和△CDF中,

,

∴△ABE≌△CDF(SSS),
∴∠ABE=∠CDF,
∵∠AEB=∠CFD=90°,
∴∠ABE+∠BAE=90°,
∴∠ABE=∠DAG=∠CDF,
同理:∠ABE=∠DAG=∠CDF=∠BCH,
∴∠DAG+∠ADG=∠CDF+∠ADG=90°,
即∠DGA=90°,
同理:∠CHB=90°,
在△ABE和△ADG中,


∴△ABE≌△ADG(AAS),
∴AE=DG,BE=AG,
同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,
∴EG=GF=FH=EF=12-5=7,
∵∠GEH=180°-90°=90°,
∴四邊形EGFH是正方形,
∴EF=EG=7;
故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:

小明遇到一個(gè)問(wèn)題:已知:如圖1,在ABC中,∠BAC=120°,ABC=40°,試過(guò)ABC的一個(gè)頂點(diǎn)畫(huà)一條直線,將此三角形分割成兩個(gè)等腰三角形.

他的做法是:如圖2,首先保留最小角∠C,然后過(guò)三角形頂點(diǎn)A畫(huà)直線交BC于點(diǎn)D. 將∠BAC分成兩個(gè)角,使∠DAC=20°,ABC即可被分割成兩個(gè)等腰三角形.

喜歡動(dòng)腦筋的小明又繼續(xù)探究:當(dāng)三角形內(nèi)角中的兩個(gè)角滿足怎樣的數(shù)量關(guān)系時(shí),此三角形一定可以被過(guò)頂點(diǎn)的一條直線分割成兩個(gè)等腰三角形.

他的做法是:

如圖3,先畫(huà)ADC ,使DA=DC,延長(zhǎng)AD到點(diǎn)B,使BCD也是等腰三角形,如果DC=BC,那么∠CDB =ABC,因?yàn)椤?/span>CDB=2A,所以∠ABC= 2A.于是小明得到了一個(gè)結(jié)論:

當(dāng)三角形中有一個(gè)角是最小角的2倍時(shí),則此三角形一定可以被過(guò)頂點(diǎn)的一條直線分割成兩個(gè)等腰三角形.

請(qǐng)你參考小明的做法繼續(xù)探究:當(dāng)三角形內(nèi)角中的兩個(gè)角滿足怎樣的數(shù)量關(guān)系時(shí),此三角形一定可以被過(guò)頂點(diǎn)的一條直線分割成兩個(gè)等腰三角形.請(qǐng)直接寫(xiě)出你所探究出的另外兩條結(jié)論(不必寫(xiě)出探究過(guò)程或理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:邊長(zhǎng)為2的正方形OABC在平面直角坐標(biāo)系中位于x軸上方,OAx軸的正半軸的夾角為60°,則B點(diǎn)的坐標(biāo)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)實(shí)驗(yàn)獲得兩個(gè)變量 x(x 0), y( y 0) 的一組對(duì)應(yīng)值如下表。

x

1

2

3

4

5

6

7

y

7

3.5

2.33

1.75

1.4

1.17

1

(1)在網(wǎng)格中建立平面直角坐標(biāo)系,畫(huà)出相應(yīng)的函數(shù)圖象,求出這個(gè)函數(shù)表達(dá)式;

(2)結(jié)合函數(shù)圖象解決問(wèn)題:(結(jié)果保留一位小數(shù))

的值約為多少?

②點(diǎn)A坐標(biāo)為(6,0),點(diǎn)B在函數(shù)圖象上,OA=OB,則點(diǎn)B的橫坐標(biāo)約是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中, ∠C=90°,邊AB的垂直平分線交AB、AC分別于點(diǎn)D,點(diǎn)E,連結(jié)BE.

(1)若∠A=40°,求∠CBE的度數(shù).

(2)若AB=10,BC=6,求△BCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,BD是矩形ABCD的對(duì)角線,∠ABD=30°,AD=1.將△BCD沿射線BD方向平移到△B′C′D′的位置,使B′BD中點(diǎn),連接AB′,C′D,AD′,BC′,如圖2.

(1)求證:四邊形AB′C′D是菱形;

(2)求四邊形ABC′D′的周長(zhǎng).

1       2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,MON=30°,點(diǎn)A1A2、A3…在射線ON上,點(diǎn)B1B2、B3…在射線OM上,A1B1A2A2B2A3、A3B3A4…均為等邊三角形,從左起第1個(gè)等邊三角形的邊長(zhǎng)記為a1,第2個(gè)等邊三角形的邊長(zhǎng)記為a2,以此類推.若OA1=1,則a2017= ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ACBECD都是等腰直角三角形,ACB=∠ECD=90°,DAB邊上一點(diǎn).

求證:(1)△ACE≌△BCD;(2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD⊙O的弦,AB經(jīng)過(guò)圓心O,交⊙O于點(diǎn)C∠DAB=∠B=30°

1)直線BD是否與⊙O相切?為什么?

2)連接CD,若CD=5,求AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案