年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,正方形ABCD位于第一象限,邊長為3,點(diǎn)A在直線y=x上,點(diǎn)A的橫坐標(biāo)為1,正方形ABCD的邊分別平行于x軸、y軸.若雙曲線y=與正方形ABCD有公共點(diǎn),則k的取值范圍為( 。
| A. | 1<k<9 | B. | 2≤k≤34 | C. | 1≤k≤16 | D. | 4≤k<16 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知在Rt△ABC中,∠ACB=90°,現(xiàn)按如下步驟作圖:
①分別以A,C為圓心,a為半徑(a>AC)作弧,兩弧分別交于M,N兩點(diǎn);
②過M,N兩點(diǎn)作直線MN交AB于點(diǎn)D,交AC于點(diǎn)E;
③將△ADE繞點(diǎn)E順時針旋轉(zhuǎn)180°,設(shè)點(diǎn)D的像為點(diǎn)F.
(1)請?jiān)趫D中直線標(biāo)出點(diǎn)F并連接CF;
(2)求證:四邊形BCFD是平行四邊形;
(3)當(dāng)∠B為多少度時,四邊形BCFD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知正方形ABCD的邊長為2,E是邊BC上的動點(diǎn),BF⊥AE交CD于點(diǎn)F,垂足為G,連結(jié)CG.下列說法:①AG>GE;②AE=BF;③點(diǎn)G運(yùn)動的路徑長為π;④CG的最小值為﹣1.其中正確的說法是 .(把你認(rèn)為正確的說法的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在“綠滿鄂南”行動中,某社區(qū)計劃對面積為1800m2的區(qū)域進(jìn)行綠化.經(jīng)投標(biāo),由甲、乙兩個工程隊(duì)來完成,已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化面積的2倍,并且在獨(dú)立完成面積為400m2區(qū)域的綠化時,甲隊(duì)比乙隊(duì)少用4天.
(1)求甲、乙兩工程隊(duì)每天能完成綠化的面積.
(2)設(shè)甲工程隊(duì)施工x天,乙工程隊(duì)施工y天,剛好完成綠化任務(wù),求y與x的函數(shù)解析式.
(3)若甲隊(duì)每天綠化費(fèi)用是0.6萬元,乙隊(duì)每天綠化費(fèi)用為0.25萬元,且甲乙兩隊(duì)施工的總天數(shù)不超過26天,則如何安排甲乙兩隊(duì)施工的天數(shù),使施工總費(fèi)用最低?并求出最低費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,等腰直角△ABC中,AB=AC=8,以AB為直徑的半圓O交斜邊BC于D,則陰影部分面積為(結(jié)果保留π)( 。
| A. | 24﹣4π | B. | 32﹣4π | C. | 32﹣8π | D. | 16 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如果m,n是兩個不相等的實(shí)數(shù),且滿足m2﹣m=3,n2﹣n=3,那么代數(shù)式2n2﹣mn+2m+2015=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
若關(guān)于的一元二次方程有兩個相等實(shí)數(shù)根,則的值是( 。
A. -1 B. 1 C. -4 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com