【題目】如圖,已知是銳角三角形.
(1)請(qǐng)?jiān)趫D1中用無(wú)刻度的直尺和圓規(guī)作圖;作直線,使上的各點(diǎn)到、兩點(diǎn)的距離相等;設(shè)直線與、分別交于點(diǎn)、,作一個(gè)圓,使得圓心在線段上,且與邊、相切;(不寫作法,保留作圖痕跡)
(2)在(1)的條件下,若,,則的半徑為________.
【答案】(1)見解析;(2)
【解析】
(1)由題意知直線為線段BC的垂直平分線,若圓心在線段上,且與邊、相切,則再作出的角平分線,與MN的交點(diǎn)即為圓心O;
(2)過點(diǎn)作,垂足為,根據(jù)即可求解.
解:(1)①先作的垂直平分線:分別以B,C為圓心,大于的長(zhǎng)為半徑畫弧,連接兩個(gè)交點(diǎn)即為直線l,分別交、于、;
②再作的角平分線:以點(diǎn)B為圓心,任意長(zhǎng)為半徑作圓弧,與的兩條邊分別有一個(gè)交點(diǎn),再以這兩個(gè)交點(diǎn)為圓心,相同長(zhǎng)度為半徑作弧,連接這兩條弧的交點(diǎn)與點(diǎn)B,即為的角平分線,這條角平分線與線段MN的交點(diǎn)即為;
③以為圓心,為半徑畫圓,圓即為所求;
(2)過點(diǎn)作,垂足為,設(shè)
∵,,∴,∴
根據(jù)面積法,∴
∴,解得,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)驗(yàn)學(xué)校某班開展數(shù)學(xué)“綜合與實(shí)踐”測(cè)量活動(dòng).有兩座垂直于水平地面且高度不一的圓柱,兩座圓柱后面有一斜坡,且圓柱底部到坡腳水平線的距離皆為.王詩(shī)嬑觀測(cè)到高度矮圓柱的影子落在地面上,其長(zhǎng)為;而高圓柱的部分影子落在坡上,如圖所示.已知落在地面上的影子皆與坡腳水平線互相垂直,并視太陽(yáng)光為平行光,測(cè)得斜坡坡度,在不計(jì)圓柱厚度與影子寬度的情況下,請(qǐng)解答下列問題:
(1)若王詩(shī)嬑的身高為,且此刻她的影子完全落在地面上,則影子長(zhǎng)為多少?
(2)猜想:此刻高圓柱和它的影子與斜坡的某個(gè)橫截面一定同在一個(gè)垂直于地面的平面內(nèi).請(qǐng)直接回答這個(gè)猜想是否正確?
(3)若同一時(shí)間量得高圓柱落在坡面上的影子長(zhǎng)為,則高圓柱的高度為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年全國(guó)兩會(huì)于3月5日在人民大會(huì)堂開幕,某社區(qū)為了解居民對(duì)此次兩會(huì)的關(guān)注程度,在全社區(qū)范圍內(nèi)隨機(jī)抽取部分居民進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把居民對(duì)兩會(huì)的關(guān)注程度分成“淡薄”、“一般”、“較強(qiáng)”、“很強(qiáng)”四個(gè)層次,并繪制成如下不完整的統(tǒng)計(jì)圖:
請(qǐng)結(jié)合圖表中的信息,解答下列問題:
(1)此次調(diào)查一共隨機(jī)抽取了_____名居民;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)扇形統(tǒng)計(jì)圖中,“很強(qiáng)”所對(duì)應(yīng)扇形圓心角的度數(shù)為_____;
(4)若該社區(qū)有1500人,則可以估計(jì)該社區(qū)居民對(duì)兩會(huì)的關(guān)注程度為“淡薄”層次的約有 _____人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的部分圖象如圖所示,則下列選項(xiàng)錯(cuò)誤的是( )
A.若,是圖象上的兩點(diǎn),則
B.
C.方程有兩個(gè)不相等的實(shí)數(shù)根
D.當(dāng)時(shí),y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是,在x軸上任取一點(diǎn)M.連接AM,分別以點(diǎn)A和點(diǎn)M為圓心,大于的長(zhǎng)為半徑作弧,兩弧相交于G,H兩點(diǎn),作直線GH,過點(diǎn)M作x軸的垂線l交直線GH于點(diǎn)P.根據(jù)以上操作,完成下列問題.
探究:
(1)線段PA與PM的數(shù)量關(guān)系為________,其理由為:________________.
(2)在x軸上多次改變點(diǎn)M的位置,按上述作圖方法得到相應(yīng)點(diǎn)P的坐標(biāo),并完成下列表格:
M的坐標(biāo) | … | … | ||||
P的坐標(biāo) | … | … |
猜想:
(3)請(qǐng)根據(jù)上述表格中P點(diǎn)的坐標(biāo),把這些點(diǎn)用平滑的曲線在圖2中連接起來;觀察畫出的曲線L,猜想曲線L的形狀是________.
驗(yàn)證:
(4)設(shè)點(diǎn)P的坐標(biāo)是,根據(jù)圖1中線段PA與PM的關(guān)系,求出y關(guān)于x的函數(shù)解析式.
應(yīng)用:
(5)如圖3,點(diǎn),,求點(diǎn)D的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, BD 是△ABC 的角平分線, AE⊥ BD ,垂足為 F ,若∠ABC=35°,∠ C=50°,則∠CDE 的度數(shù)為( )
A.35°B.40°C.45°D.50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】快車從甲地駛往乙地,慢車從乙地駛往甲地,兩車同時(shí)出發(fā)并且在同一條公路上勻速行駛.圖中折線表示快、慢兩車之間的路程與它們的行駛時(shí)間之間的函數(shù)關(guān)系.小欣同學(xué)結(jié)合圖像得出如下結(jié)論:
①快車途中停留了; ②快車速度比慢車速度多;
③圖中; ④快車先到達(dá)目的地.
其中正確的是( )
A.①③B.②③C.②④D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線交軸于點(diǎn)A,交軸于點(diǎn)B,拋物線經(jīng)過點(diǎn)A,交軸于點(diǎn),點(diǎn)P為直線AB下方拋物線上一動(dòng)點(diǎn),過點(diǎn)P作于D,連接AP.
(1)求拋物線的解析式;
(2)若以點(diǎn)為頂點(diǎn)的三角形與相似,求點(diǎn)P的坐標(biāo);
(3)將繞點(diǎn)A旋轉(zhuǎn),當(dāng)點(diǎn)O的對(duì)應(yīng)點(diǎn)落在拋物線的對(duì)稱軸上時(shí),請(qǐng)直接寫出點(diǎn)B的對(duì)應(yīng)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線:的頂點(diǎn)為,與軸相交于點(diǎn),先將拋物線沿軸翻折,再向右平移p個(gè)單位長(zhǎng)度后得到拋物,直線;經(jīng)過,兩點(diǎn).
(1)求點(diǎn)的坐標(biāo),并結(jié)合圖象直接寫出不等式:的解集;
(2)若拋物線的頂點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱,求p的值及拋物線的解析式;
(3)若拋物線與軸的交點(diǎn)為、(點(diǎn)、分別與拋物線上點(diǎn)、對(duì)應(yīng)),試問四邊形是何種特殊四邊形?并說明其理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com