【題目】如圖,已知點A(﹣2,0),B(4,0),C(0,3),以D為頂點的拋物線y=ax2+bx+c過A,B,C三點.
(1)求拋物線的解析式及頂點D的坐標;
(2)設(shè)拋物線的對稱軸DE交線段BC于點E,P為第一象限內(nèi)拋物線上一點,過點P作x軸的垂線,交線段BC于點F,若四邊形DEFP為平行四邊形,求點P的坐標.
【答案】(1)y=﹣x2+x+3;D(1,);(2)P(3,).
【解析】
(1)設(shè)拋物線的解析式為y=a(x+2)(x-4),將點C(0,3)代入可求得a的值,將a的值代入可求得拋物線的解析式,配方可得頂點D的坐標;
(2)畫圖,先根據(jù)點B和C的坐標確定直線BC的解析式,設(shè)P(m,-m2+m+3),則F(m,-m+3),表示PF的長,根據(jù)四邊形DEFP為平行四邊形,由DE=PF列方程可得m的值,從而得P的坐標.
解:(1)設(shè)拋物線的解析式為y=a(x+2)(x﹣4),
將點C(0,3)代入得:﹣8a=3,
解得:a=﹣,
y=﹣x2+x+3=﹣(x﹣1)2+,
∴拋物線的解析式為y=﹣x2+x+3,且頂點D(1,);
(2)∵B(4,0),C(0,3),
∴BC的解析式為:y=﹣x+3,
∵D(1,),
當x=1時,y=﹣+3=,
∴E(1,),
∴DE=-=,
設(shè)P(m,﹣m2+m+3),則F(m,﹣m+3),
∵四邊形DEFP是平行四邊形,且DE∥FP,
∴DE=FP,
即(﹣m2+m+3)﹣(﹣m+3)=,
解得:m1=1(舍),m2=3,
∴P(3,).
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①,在平行四邊形紙片ABCD中,AD=5,SABCD=15,過點A作AE⊥BC,垂足為E,沿AE剪下△ABE,將它平移至△DCE'的位置,拼成四邊形AEE'D,判斷四邊形AEE'D的形狀;
(2)如圖②,在(1)中的四邊形紙片AEE'D中,在EE'上取一點F,使EF=4,剪下△AEF,將它平移至△DE'F'的位置,拼成四邊形AFF'D.
①求證:四邊形AFF'D是菱形;
②求四邊形AFF'D的兩條對角線的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題的逆命題成立的有( )
①勾股數(shù)是三個正整數(shù) ②全等三角形的三條對應(yīng)邊分別相等
③如果兩個實數(shù)相等,那么它們的平方相等 ④平行四邊形的兩組對角分別相等
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】腰長為4的等腰直角放在如圖所示的平面直角坐標系中,點A、C均在y軸上,C(0,2),∠ACB=90,AC=BC=4,平行于y軸的直線x=-2交線段AB于點D,點P是直線x=-2上一動點,且在點D的上方,當時,以PB為直角邊作等腰直角,則所有符合條件的點M的坐標為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,平分.
(1)若為線段上的一個點,過點作交線段的延長線于點.
①若,,則_______;
②猜想與、之間的數(shù)量關(guān)系,并給出證明.
(2)若在線段的延長線上,過點作交直線于點,請你直接寫出與、的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,反比例函數(shù)(x>0)與正比例函數(shù)y=kx、 (k>1)的圖象分別交于點A、B,若∠AOB=45°,則△AOB的面積是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,若將四根木條釘成的矩形木框ABCD變形為平行四邊形A′BCD′,并使其面積為矩形ABCD面積的一半,若A′D′與CD交于點E,且AB=2,則△ECD′的面積是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】選擇適當?shù)姆椒ń庀铝蟹匠?/span>:
(1)7x(3x-4)=9(3x-4);
(2)x2-6x+9=(5-2x)2;
(3)2x2-5x-7=0;
(4)x2-2x-1=0.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的內(nèi)切圓與三邊分別相切于點D、E、F,則下列等式:
①∠EDF=∠B;
②2∠EDF=∠A+∠C;
③2∠A=∠FED+∠EDF;
④∠AED+∠BFE+∠CDF=180°,其中成立的個數(shù)是( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com