【題目】在四邊形ABCD中,AD∥BC,AD=2BC,點E為AD的中點,連接BE、BD,∠ABD=90°.
(1)如圖l,求證:四邊形BCDE為菱形;
(2)如圖2,連接AC交BD于點F,連接EF,若AC平分∠BAD,在不添加任何輔助線的情況下,請直接寫出圖2中四個三角形,使寫出的每個三角形的面積都等于△ABC面積的.
【答案】(1)見解析;(2)△ABF,△AEF,△DEF,△DCF.
【解析】
(1)由題意可得DE=BC,DE∥BC,推出四邊形BCDE是平行四邊形,再證明BE=DE即可解決問題;
(2)由題意可證△BFC∽△DFA,由相似三角形的性質(zhì)可得,FD=2BF,由三角形的中線性質(zhì)和菱形性質(zhì)可求解.
證明(1)∵AD=2BC,E為AD的中點,
∴DE=BC,
∵AD∥BC,
∴四邊形BCDE是平行四邊形,
∵∠ABD=90°,AE=DE,
∴BE=DE,
∴四邊形BCDE是菱形.
(2)△ABF,△AEF,△DEF,△DCF,
理由如下:∵BC∥AD,
∴△BFC∽△DFA,
∴,
∴,FD=2BF,
∴S△ABF=S△ABC,
∵FD=2BF
∴S△AFD=2S△ABF,且點E是AD中點,
∴S△AEF=S△EFD=S△ABF=S△ABC,
∵四邊形BEDC是菱形,
∴ED=CD,∠BDE=∠BDC,且DF=DF,
∴△DEF≌△DCF(SAS),
∴S△DCF=S△DEF=S△ABF=S△ABC.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與軸和軸分別交于點和點拋物線經(jīng)過點與直線的另一個交點為.
求的值和拋物線的解析式
點在拋物線上,軸交直線于點點在直線上,且四邊形為矩形.設(shè)點的橫坐標為矩形的周長為求與的函數(shù)關(guān)系式以及的最大值
將繞平面內(nèi)某點逆時針旋轉(zhuǎn)得到(點分別與點對應(yīng)),若的兩個頂點恰好落在拋物線上,請直接寫出點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC和△CDE都是等腰三角形,∠BAC=∠EDC=120°.
(1)如圖1,A、D、C在同一直線上時,=_______,=_______;
(2)在圖1的基礎(chǔ)上,固定△ABC,將△CDE繞C旋轉(zhuǎn)一定的角度α(0°<α<360°),如圖2,連接AD、BE.
① 的值有沒有改變?請說明理由.
②拓展研究:若AB=1,DE=,當 B、D、E在同一直線上時,請計算線段AD的長;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線的頂點坐標為(0,1)且經(jīng)過點A(1,2),直線y=3x﹣4經(jīng)過點B(,n),與y軸交點為C.
(1)求拋物線的解析式及n的值;
(2)將直線BC繞原點O逆時針旋轉(zhuǎn)45°,求旋轉(zhuǎn)后的直線的解析式;
(3)如圖2將拋物線繞原點O順時針旋轉(zhuǎn)45°得到新曲線,新曲線與直線BC交于點M、N,點M在點N的上方,求點N的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在網(wǎng)格圖中建立平面直角坐標系,的頂點坐標為、、.
(1)若將向右平移3個單位長度,再向上平移1個單位長度,請畫出平移后的;
(2)畫出繞C1順時針方向旋轉(zhuǎn)90°后得到的;
(3)與是中心對稱圖形,請寫出對稱中心的坐標: ;并計算的面積: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠DAB=60°,AE分別交BC、BD于點E、F,CE=2,連接CF,以下結(jié)論:①△ABF≌△CBF;②點E到AB的距離是2;③tan∠DCF=;④△ABF的面積為.其中一定成立的是 (把所有正確結(jié)論的序號都填在橫線上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,分別是邊上的點,,將沿所在直線折疊,點的對應(yīng)點正好落在線段上,若,則折痕的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是的中點,連接AC并延長至點D,使CD=AC,點E是OB上一點,且,CE的延長線交DB的延長線于點F,AF交⊙O于點H,連接BH.
(1)求證:BD是⊙O的切線;(2)當OB=2時,求BH的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com