【題目】在四邊形ABCD中,ADBC,AD2BC,點EAD的中點,連接BE、BD,∠ABD90°

1)如圖l,求證:四邊形BCDE為菱形;

2)如圖2,連接ACBD于點F,連接EF,若AC平分∠BAD,在不添加任何輔助線的情況下,請直接寫出圖2中四個三角形,使寫出的每個三角形的面積都等于ABC面積的

【答案】(1)見解析;(2ABFAEF,DEFDCF.

【解析】

1)由題意可得DE=BC,DEBC,推出四邊形BCDE是平行四邊形,再證明BE=DE即可解決問題;
2)由題意可證△BFC∽△DFA,由相似三角形的性質(zhì)可得FD=2BF,由三角形的中線性質(zhì)和菱形性質(zhì)可求解.

證明(1AD2BCEAD的中點,

DEBC,

ADBC,

四邊形BCDE是平行四邊形,

∵∠ABD90°AEDE,

BEDE

四邊形BCDE是菱形.

2ABF,AEFDEF,DCF,

理由如下:BCAD,

∴△BFC∽△DFA

,

,FD2BF

SABFSABC,

FD2BF

SAFD2SABF,且點EAD中點,

SAEFSEFDSABFSABC,

四邊形BEDC是菱形,

EDCDBDEBDC,且DFDF

∴△DEF≌△DCFSAS),

SDCFSDEFSABFSABC.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線軸和軸分別交于點和點拋物線經(jīng)過點與直線的另一個交點為

的值和拋物線的解析式

在拋物線上,軸交直線于點在直線上,且四邊形為矩形.設(shè)點的橫坐標為矩形的周長為的函數(shù)關(guān)系式以及的最大值

繞平面內(nèi)某點逆時針旋轉(zhuǎn)得到(點分別與點對應(yīng)),若的兩個頂點恰好落在拋物線上,請直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCCDE都是等腰三角形,∠BAC=∠EDC120°

1)如圖1,AD、C在同一直線上時,_______,_______;

2)在圖1的基礎(chǔ)上,固定ABC,將CDEC旋轉(zhuǎn)一定的角度α(0°α360°),如圖2,連接AD、BE

的值有沒有改變?請說明理由.

②拓展研究:若AB1,DE,當 B、D、E在同一直線上時,請計算線段AD的長;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線的頂點坐標為(0,1)且經(jīng)過點A1,2),直線y3x4經(jīng)過點B,n),與y軸交點為C

1)求拋物線的解析式及n的值;

2)將直線BC繞原點O逆時針旋轉(zhuǎn)45°,求旋轉(zhuǎn)后的直線的解析式;

3)如圖2將拋物線繞原點O順時針旋轉(zhuǎn)45°得到新曲線,新曲線與直線BC交于點MN,點M在點N的上方,求點N的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,DEBC,EFAB,則下列結(jié)論正確的是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在網(wǎng)格圖中建立平面直角坐標系,的頂點坐標為、

1)若將向右平移3個單位長度,再向上平移1個單位長度,請畫出平移后的;

2)畫出C1順時針方向旋轉(zhuǎn)90°后得到的

3是中心對稱圖形,請寫出對稱中心的坐標: ;并計算的面積:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=6,∠DAB=60°,AE分別交BC、BD于點EF,CE=2,連接CF,以下結(jié)論:①△ABF≌△CBF;EAB的距離是2;③tan∠DCF=;④△ABF的面積為.其中一定成立的是 (把所有正確結(jié)論的序號都填在橫線上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,分別是邊上的點,,將沿所在直線折疊,點的對應(yīng)點正好落在線段上,若,則折痕的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C的中點,連接AC并延長至點D,使CDAC,點EOB上一點,且CE的延長線交DB的延長線于點F,AF交⊙O于點H,連接BH

1)求證:BD是⊙O的切線;(2)當OB2時,求BH的長.

查看答案和解析>>

同步練習(xí)冊答案