【題目】如圖在Rt△ABC中,∠C=90°,點D是AC的中點,且∠A+∠CDB=90°,過點A、D作⊙O,使圓心O在AB上,⊙O與AB交于點E.
(1)求證:直線BD與⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直徑.
【答案】(1)、證明過程見解析;(2)、5.
【解析】
試題分析:(1)、連接OD,根據△AOD為等腰三角形可得∠A=∠ODA,根據∠A+∠CDB=90°可得∠ODA+∠CDB=90°,從而得出∠BDO=90°;(2)、連接OE,根據直徑所對的圓周角為直角得出∠ADE=90°,根據D為中點可得E為AB的中點,根據△ADE和△ACB相似可得AC:AB=4:5,然后求出BC的長度,從而得出直徑的長度.
試題解析:(1)、連接OD,在△AOD中,OA=OD, ∴∠A=∠ODA,
又∵∠A+∠CDB=90° ∴∠ODA+∠CDB=90°, ∴∠BDO=180°-90°=90°,即OD⊥BD,
∴BD與⊙O相切.
(2)、連接DE,∵AE是⊙O的直徑, ∴∠ADE=90°, ∴DE∥BC.
又∵D是AC的中點,∴AE=BE. ∴△AED∽△ABC.
∴AC∶AB=AD∶AE. ∵AD:AE=4:5 ∴AC∶AB=4∶5,
令AC=4x,AB=5x,則BC=3x. ∵BC=6,∴AB=10,
∴AE=5,∴⊙O的直徑為5.
科目:初中數學 來源: 題型:
【題目】一船在A處測得北偏東45°方向有一燈塔B,船向正東方向以每小時20海里的速度航行1.5小時到達C處時,又觀測到燈塔B在北偏東15°方向上,求此時航船與燈塔相距多少海里?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】以下問題,不適合用普查的是( 。
A. 了解全班同學每周體育鍛煉的時間
B. 旅客上飛機前的安檢
C. 學校招聘教師,對應聘人員面試
D. 了解一批燈泡的使用壽命
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com