對(duì)于平面直角坐標(biāo)系O中的點(diǎn)P和⊙C,給出如下定義:若⊙C上存在兩個(gè)點(diǎn)A,B,使得∠APB=60°,則稱P為⊙C 的關(guān)聯(lián)點(diǎn)。

已知點(diǎn)D(,),E(0,-2),F(xiàn)(,0)

(1)當(dāng)⊙O的半徑為1時(shí),

①在點(diǎn)D,E,F(xiàn)中,⊙O的關(guān)聯(lián)點(diǎn)是__________;

②過點(diǎn)F作直線交軸正半軸于點(diǎn)G,使∠GFO=30°,若直線上的點(diǎn)P()是⊙O的關(guān)聯(lián)點(diǎn),求的取值范圍;

(2)若線段EF上的所有點(diǎn)都是某個(gè)圓的關(guān)聯(lián)點(diǎn),求這個(gè)圓的半徑的取值范圍。

解析:【解析】(1) ①;

② 由題意可知,若點(diǎn)要?jiǎng)偤檬菆A的關(guān)聯(lián)點(diǎn);

     需要點(diǎn)到圓的兩條切線之間所夾

的角度為;

由圖可知,則,

連接,則;

∴若點(diǎn)為圓的關(guān)聯(lián)點(diǎn);則需點(diǎn)到圓心的距離滿足;

由上述證明可知,考慮臨界位置的點(diǎn),如圖2;

點(diǎn)到原點(diǎn)的距離

軸的垂線,垂足為;

;

;

;

;


易得點(diǎn)與點(diǎn)重合,過軸于點(diǎn);

易得

;

從而若點(diǎn)為圓的關(guān)聯(lián)點(diǎn),則點(diǎn)必在線段上;

;

(2) 若線段上的所有點(diǎn)都是某個(gè)圓的關(guān)聯(lián)點(diǎn),欲使這個(gè)圓的半徑最小,

  則這個(gè)圓的圓心應(yīng)在線段的中點(diǎn);

考慮臨界情況,如圖3;

即恰好點(diǎn)為圓的關(guān)聯(lián)時(shí),則;

∴此時(shí);

故若線段上的所有點(diǎn)都是某個(gè)圓的關(guān)聯(lián)點(diǎn),

這個(gè)圓的半徑的取值范圍為.

【點(diǎn)評(píng)】“新定義”問題最關(guān)鍵的是要能夠把“新定義”轉(zhuǎn)化為自己熟悉的知識(shí),通過第(2)問開

頭部分的解析,可以看出本題的“關(guān)聯(lián)點(diǎn)”本質(zhì)就是到圓心的距離小于或等于倍半

徑的點(diǎn).

了解了這一點(diǎn),在結(jié)合平面直角坐標(biāo)系和圓的知識(shí)去解答就事半功倍了.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•無錫)對(duì)于平面直角坐標(biāo)系中的任意兩點(diǎn)P1(x1,y1),P2(x2,y2),我們把|x1-x2|+|y1-y2|叫做P1、P2兩點(diǎn)間的直角距離,記作d(P1,P2).
(1)已知O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P(x,y)滿足d(O,P)=1,請(qǐng)寫出x與y之間滿足的關(guān)系式,并在所給的直角坐標(biāo)系中畫出所有符合條件的點(diǎn)P所組成的圖形;
(2)設(shè)P0(x0,y0)是一定點(diǎn),Q(x,y)是直線y=ax+b上的動(dòng)點(diǎn),我們把d(P0,Q)的最小值叫做P0到直線y=ax+b的直角距離.試求點(diǎn)M(2,1)到直線y=x+2的直角距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•燕山區(qū)一模)定義:對(duì)于平面直角坐標(biāo)系中的任意線段AB及點(diǎn)P,任取線段AB上一點(diǎn)Q,線段PQ長(zhǎng)度的最小值稱為點(diǎn)P到線段AB的距離,記作d(P→AB).
已知O為坐標(biāo)原點(diǎn),A(4,0),B(3,3),C(m,n),D(m+4,n)是平面直角坐標(biāo)系中四點(diǎn).根據(jù)上述定義,解答下列問題:
(1)點(diǎn)A到線段OB的距離d(A→OB)=
2
2
2
2
;
(2)已知點(diǎn)G到線段OB的距離d(G→OB)=
5
,且點(diǎn)G的橫坐標(biāo)為1,則點(diǎn)G的縱坐標(biāo)為
1-
10
或1+
10
1-
10
或1+
10

(3)當(dāng)m的值變化時(shí),點(diǎn)A到動(dòng)線段CD的距離d (A→CD)始終為2,線段CD的中點(diǎn)為M.
①在圖(2)中畫出點(diǎn)M隨線段CD運(yùn)動(dòng)所圍成的圖形并求出該圖形的面積.
②點(diǎn)E的坐標(biāo)為(0,2),m>0,n>0,作MH⊥x軸,垂足為H.是否存在m的值,使得以A、M、H為頂點(diǎn)的三角形與△AOE相似?若存在,求出m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•北京)對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P和⊙C,給出如下的定義:若⊙C上存在兩個(gè)點(diǎn)A、B,使得∠APB=60°,則稱P為⊙C的關(guān)聯(lián)點(diǎn).已知點(diǎn)D(
1
2
,
1
2
),E(0,-2),F(xiàn)(2
3
,0).
(1)當(dāng)⊙O的半徑為1時(shí),
①在點(diǎn)D、E、F中,⊙O的關(guān)聯(lián)點(diǎn)是
D,E
D,E

②過點(diǎn)F作直線l交y軸正半軸于點(diǎn)G,使∠GFO=30°,若直線l上的點(diǎn)P(m,n)是⊙O的關(guān)聯(lián)點(diǎn),求m的取值范圍;
(2)若線段EF上的所有點(diǎn)都是某個(gè)圓的關(guān)聯(lián)點(diǎn),求這個(gè)圓的半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•房縣模擬)問題:對(duì)于平面直角坐標(biāo)系中的任意兩點(diǎn)P1(x1,y1)、P2(x2,y2),我們把|x1-x2|+|y1-y2|叫做P1、P2兩點(diǎn)間的直角距離,記作d(P1,P2).如:P(-2,3)、Q(2,5)則P、Q兩點(diǎn)的直角距離為d(P,Q)=|-2-2|+|3-5|=6
請(qǐng)根據(jù)根據(jù)以上閱讀材料,解答下列問題:
(1)計(jì)算M(-2,7),N(-3,-5)的直角距離d(M,N)=
13
13

(2)已知O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P(x,y)滿足d(O,P)=1,則x與y之間滿足的關(guān)系式為
|x|+|y|=1
|x|+|y|=1

(3)設(shè)P0(x0,y0)是一定點(diǎn),Q(x,y)是直線y=ax+b上的動(dòng)點(diǎn),我們把d(P0,Q)的最小值叫做P0到直線y=ax+b的直角距離,試求點(diǎn)M(4,2)到直線y=x+2的直角距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(北京卷)數(shù)學(xué)(解析版) 題型:解答題

對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P和⊙C,給出如下定義:若⊙C上存在兩個(gè)點(diǎn)A,B,使得∠APB=60°,則稱P為⊙C 的關(guān)聯(lián)點(diǎn)。已知點(diǎn)D(,),E(0,-2),F(xiàn)(,0)

(1)當(dāng)⊙O的半徑為1時(shí),

①在點(diǎn)D,E,F(xiàn)中,⊙O的關(guān)聯(lián)點(diǎn)是       

②過點(diǎn)F作直線交y軸正半軸于點(diǎn)G,使∠GFO=30°,若直線上的點(diǎn)P(m,n)是⊙O的關(guān)聯(lián)點(diǎn),求m的取值范圍;

(2)若線段EF上的所有點(diǎn)都是某個(gè)圓的關(guān)聯(lián)點(diǎn),求這個(gè)圓的半徑r的取值范圍。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案