精英家教網 > 初中數學 > 題目詳情

【題目】如圖,將兩塊三角尺AOBCOD的直角頂點O重合在一起,若∠AOD=4BOC,OE為∠BOC的平分線,則∠DOE的度數為( 。

A. 36° B. 45° C. 60° D. 72°

【答案】D

【解析】根據AOD+∠BOC=180°,∠AOD=4∠BOC,求出BOC的度數,再根據角平分線求出COE的度數,利用DOE=∠COD-COE即可解答.

∵∠AOB=90,COD=90°,

∴∠AOB+COD=180°

∵∠AOB=AOC+BOC,COD=BOC+BOD

∴∠AOC+BOC+BOC+BOD=180°,

∴∠AOD+BOC=180°

∵∠AOD=4BOC,

4BOC+BOC=180°,

∴∠BOC=36°,

OEBOC的平分線,

∴∠COE=BOC=18°,

∴∠DOE=CODCOE=9018=72°,

故選:D.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖:在正方形ABCD中,E為CD邊上的一點,F為BC的延長線上一點,CE=CF。

⑴△BCE與△DCF全等嗎?說明理由;

⑵若∠BEC=60o,求∠EFD。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,點EAD邊上,點FAD的延長線上,且BE=CF.

(1)求證:四邊形EBCF是平行四邊形.

(2)若BEC=90°,ABE=30°,AB=,求ED的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】兩塊等腰直角三角形紙片AOBCOD按圖所示放置,直角頂點重合在點O處,AB25.保持紙片AOB不動,將紙片COD繞點O逆時針旋轉α(0°α90°)角度,如圖所示.

(1)在圖中,求證:ACBD,且ACBD;

(2)BDCD在同一直線上(如圖③)時,若AC7,求CD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】數據1,3,5,12,a,其中整數a是這組數據的中位數,則該組數據的平均數是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,OE,OD分別平分∠AOC和∠BOC,

(1)如果∠AOB=90°,BOC=38°,求∠DOE的度數;

(2)如果∠AOB=α,BOC=β(α、β均為銳角,αβ),其他條件不變,求∠DOE;

(3)從(1)、(2)的結果中,你發(fā)現了什么規(guī)律,請寫出來.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】用若干個大小相同,棱長為1的小正方體搭成一個幾何體模型,其三視圖如圖所示,則搭成這個幾何體模型所用的小正方體的個數是( 。

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為創(chuàng)建大數據應用示范城市,我市某機構針對市民最關心的四類生活信息進行了民意調查(被調查者每人限選一項),下面是部分四類生活信息關注度統(tǒng)計圖表,請根據圖中提供的信息解答下列問題:

(1)本次參與調查的人數有______ 人;

(2)關注城市醫(yī)療信息的有______ 人,并補全條形統(tǒng)計圖;

(3)扇形統(tǒng)計圖中,D部分的圓心角是______度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠ABC=45°,以AB為直徑的⊙O交BC于點D,若BC=4 ,則圖中陰影部分的面積為(
A.π+1
B.π+2
C.2π+2
D.4π+1

查看答案和解析>>

同步練習冊答案