【題目】如圖,點E在△ABC的外部,點DBC上,DEAC于點F,若∠1=2,AE=AC,BC=DE.

(1)求證:AB=AD;

(2)若∠1=60°,判斷△ABD的形狀,并說明理由.

【答案】(1)見解析;(2)△ABD是等邊三角形.理由見解析.

【解析】分析

(1)由∠1=∠2結(jié)合∠AFE=∠DFC可得∠E=∠C,這樣結(jié)合AE=AC,BC=DE即可證得△ABC≌△ADE,由此即可得到AB=AD;

(2)由∠1=∠2=60°可得∠BDE=120°,△ABC≌△ADE可得∠B=∠ADE,AB=AD,進而可得∠B=∠ADB=∠ADE,由此即可得到∠ADB=∠BDE=60°,這樣結(jié)合AB=AD即可得到△ABD是等邊三角形.

詳解

(1)∵∠1+∠AFE+∠E=180°,∠2+∠CFD+∠C=180°,∠1=∠2,∠AFE=∠CFD,

∴∠E=∠C,

∵AC=AE,∠C=∠E,BC=DE,

∴△ABC≌△ADE,

∴AB=AD.

(2)△ABD是等邊三角形.理由如下

∵∠1=∠2=60°,

∴∠BDE=180°﹣∠2=120°,

∵△ABC≌△ADE,

∴∠B=∠ADE,AB=AD,

∴∠B=∠ADB,

∴∠ADB=∠ADE,

∴∠ADB=∠BDE=60°,

∴△ABD是等邊三角形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】下列命題是真命題的是( )

A. a2=b2,a=b B. 若∠1+∠2=90,則∠1與∠2互余

C. 若∠α與∠β是同位角,則∠α=∠β D. a⊥b,b⊥c,則a⊥c

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC繞著點C順時針旋轉(zhuǎn)50°后得到△A′B′C′.若∠A=40°.∠B′=110°,則∠BCA′的度數(shù)是(

A.110°
B.80°
C.40°
D.30°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,數(shù)軸上有A、B、C三點,且AB=3BC,若B為原點,A點表示數(shù)為6.

(1)求C點表示的數(shù);

(2)若數(shù)軸上有一動點P,以每秒1個單位的速度從點C向點A勻速運動,設(shè)運動時間為t秒,請用含t的代數(shù)式表示PB的長;

(3)在(2)的條件下,點P運動的同時有一動點Q從點A以每秒2個單位的速度向點C勻速運動,當P、Q兩點相距2個單位長度時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CA=CB,CD=CE,ACB=DCE=40°,AD、BE交于點H,連接CH,則∠CHE=__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地下管道,若由甲隊單獨鋪設(shè)恰好在規(guī)定時間內(nèi)完成;若由乙隊單獨鋪設(shè),需要超過規(guī)定時間15天才能完成,如果先由甲、乙兩隊合做10,再由乙隊單獨鋪設(shè)正好按時完成.

(1)這項工程的規(guī)定時間是多少天?

(2)已知甲隊每天的施工費用為5000,乙隊每天的施工費用為3000,為了縮短工期以減少對居民交通的影響工程指揮部最終決定該工程由甲、乙兩隊合做來完成,那么該工程施工費用是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個小正方形邊長都為1,以每個小正方形頂點為頂點按下列要求在圖①和圖②中分別畫三角形和平行四邊形.

(1)使三角形三邊長為2,3,;

(2)使平行四邊形有一銳角為45°,且面積為4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖一輛汽車和一輛摩托車分別從A,B兩地去同一城市,l1 ,l2分別表示汽車、摩托車離A地的距離s(km)隨時間t(h)變化的圖象,則下列結(jié)論:摩托車比汽車晚到1 h;②A,B兩地的距離為20 km;③摩托車的速度為45 km/h,汽車的速度為60 km/h;④汽車出發(fā)1 h后與摩托車相遇,此時距離B40 km;⑤相遇前摩托車的速度比汽車的速度快.其中正確的結(jié)論有(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點.

(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最。咳舸嬖,求出Q點的坐標;若不存在,請說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若沒有,請說明理由.

查看答案和解析>>

同步練習冊答案