【題目】如圖,已知一次函數(shù)y=2x的圖象與反比例函數(shù)y=的圖象交于點(diǎn)(a,2).
(1)求a和k的值.
(2)若點(diǎn)P(m,n)在反比例函數(shù)圖象上,且點(diǎn)P到y軸的距離小于1,請根據(jù)圖象直接寫出n的取值范圍.
【答案】(1)a=1,k=1;(2)n的取值范圍為n<﹣2或n>2.
【解析】
(1)現(xiàn)將(a,2)代入y=2x中可求得a=1,再把(1,2)代入y=,解即可求得k的值;
(2)先分別將自變量為1和-1代入解析式、確定其對應(yīng)的函數(shù)值,然后再結(jié)合函數(shù)圖像確定n的范圍.
解:(1)把(a,2)代入y=2x得2a=2,解得a=1,
把(1,2)代入y=得3k﹣1=2,解得k=1;
(2)反比例函數(shù)的解析式為y=,
當(dāng)x=1時(shí),y==2;當(dāng)x=﹣1時(shí),y==﹣2,
所以當(dāng)點(diǎn)P到y軸的距離小于1,n的取值范圍為n<﹣2或n>2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線與軸交于點(diǎn)與軸交于點(diǎn),,且點(diǎn)的坐標(biāo)為.
(1)求該拋物線的解析式.
(2)如圖1,若點(diǎn)是線段上的一動點(diǎn),過點(diǎn)作,交于,連接,求面積的最大值.
(3)如圖2,若直線與線段交于點(diǎn),與線段交于點(diǎn),是否存在,,使得為直角三角形,若存在,請求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,分別是邊上的點(diǎn),,將沿所在直線折疊,點(diǎn)的對應(yīng)點(diǎn)正好落在線段上,若,則折痕的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一般捕魚船在A處發(fā)出求救信號,位于A處正西方向的B處有一艘救援艇決定前去數(shù)援,但兩船之間有大片暗礁,無法直線到達(dá).救援艇決定馬上調(diào)整方向,先向北偏東方以每小時(shí)30海里的速度航行,同時(shí)捕魚船向正北低速航行.30分鐘后,捕魚船到達(dá)距離A處海里的D處,此時(shí)救援艇在C處測得D處在南偏東的方向上.
求C、D兩點(diǎn)的距離;
捕魚船繼續(xù)低速向北航行,救援艇決定再次調(diào)整航向,沿CE方向前去救援,并且捕魚船和救援艇同達(dá)時(shí)到E處,若兩船航速不變,求的正弦值.參考數(shù)據(jù):,,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)著名的希波克拉蒂月牙問題:如圖1,以直角三角形的各邊為直徑分別向上作半圓,則直角三角形的面積可表示成兩個(gè)月牙形的面積之和,現(xiàn)將三個(gè)半圓紙片沿直角三角形的各邊向下翻折得到圖2,把較小的兩張半圓紙片的重疊部分面積記為S1,大半圓紙片未被覆蓋部分的面積記為S2,則直角三角形的面積可表示成( )
A.S1+S2B.S2﹣S1C.S2﹣2S1D.S1S2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的周長為36 cm,對角線相交于點(diǎn)cm.若點(diǎn)是的中點(diǎn),則的周長為( )
A.10 cmB.15 cmC.20 cmD.30 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,己知拋物線與軸相交于點(diǎn),其對稱軸與拋物線相交于點(diǎn),與軸相交于點(diǎn).
(1)求的長;
(2)平移該拋物線得到一條新拋物線,設(shè)新拋物線的頂點(diǎn)為.若新拋物線經(jīng)過原點(diǎn),且,求新拋物線對應(yīng)的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),∠ABC的平分線交⊙O于點(diǎn)D,DE⊥BC于點(diǎn)E.
(1)試判斷DE與⊙O的位置關(guān)系,并說明理由;
(2)過點(diǎn)D作DF⊥AB于點(diǎn)F,若BE=3,DF=3,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線的對稱軸為,與軸交于、兩點(diǎn),與軸交于點(diǎn),其中、.
(1)求這條拋物線的函數(shù)表達(dá)式.
(2)在對稱軸上是否存在一點(diǎn),使得的周長最。舸嬖谡埱蟪鳇c(diǎn)的坐標(biāo).若不存在請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com