【題目】如圖,點(diǎn)P關(guān)于OA、OB的對(duì)稱點(diǎn)分別為H、G,直線HGOA、OB于點(diǎn)CD,若∠HOG=80°,則∠CPD=___________

【答案】100°

【解析】

要求∠CPD的度數(shù),要在△CPD中進(jìn)行,根據(jù)軸對(duì)稱的性質(zhì)和等腰三角形的性質(zhì)找出與∠CPD的關(guān)系,利用已知可得∠AOB=40°可求出∠CPD

解:連接OP

P關(guān)于OA、OB的對(duì)稱點(diǎn)是H、G,
OA垂直平分PHR,OB垂直平分PGT
CP=CH,DG=DP
∴∠PCD=2CHP,∠PDC=2DGP,
∵∠PRC=PTD=90°,
∴在四邊形OTPR中,
∴∠RPT+AOB=180°,
∵∠POC=COH,∠POD=DOG,∠HOG=80°,
∴∠AOB=40°
∴∠RPT=180°-40°=140°
∴∠CHP+PGD=40°,
∴∠PCD+PDC=80°
∴∠CPD=180°-80°=100°.
故答案為100°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形ABC的直角頂點(diǎn)在x軸上,頂點(diǎn)By軸上,頂點(diǎn)C在函數(shù)x0)的圖象上,且BCx軸.將△ABC沿y軸正方向平移,使點(diǎn)A的對(duì)應(yīng)點(diǎn)落在此函數(shù)的圖象上,則平移的距離為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:如果一個(gè)數(shù)的平方等于,記為記,這個(gè)數(shù)叫做虛數(shù)單位,那么形如(為實(shí)數(shù))的數(shù)就叫做復(fù)數(shù),叫這個(gè)復(fù)數(shù)的實(shí)部,叫做這個(gè)復(fù)數(shù)的虛部。它有如下特點(diǎn):①它的加,減,乘法運(yùn)算與整式的加,減,乘法運(yùn)算類似。例如計(jì)算:;②若他們的實(shí)部和虛部分別相等,則稱這兩個(gè)復(fù)數(shù)相等;若它們的實(shí)部相等,虛部互為相反數(shù),則稱這兩個(gè)復(fù)數(shù)共軛,如的共軛復(fù)數(shù)為。

1)填空: ; 。

(2)求的共軛復(fù)數(shù):

3)已知,其中為正整數(shù),求的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)

過點(diǎn)A、C、B的拋物線的一部分C1與經(jīng)過點(diǎn)A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封

閉曲線稱為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,),點(diǎn)M是拋物線C2<0)的頂點(diǎn).

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得PBC的面積最大?若存在,求出PBC面積的最大值;若不存在,請(qǐng)說(shuō)明理由;

(3)當(dāng)BDM為直角三角形時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近幾年,隨著電子商務(wù)的快速發(fā)展,“電商包裹件”占“快遞件”總量的比例逐年增長(zhǎng),根據(jù)企業(yè)財(cái)報(bào),某網(wǎng)站得到如下統(tǒng)計(jì)表:

(1)請(qǐng)選擇適當(dāng)?shù)慕y(tǒng)計(jì)圖,描述2014﹣2017年“電商包裹件”占當(dāng)年“快遞件”總量的百分比(精確到1%);

(2)若2018年“快遞件”總量將達(dá)到675億件,請(qǐng)估計(jì)其中“電商包裹件”約為多少億件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為﹣1,點(diǎn)B表示的數(shù)為3,點(diǎn)P為數(shù)軸上一動(dòng)點(diǎn).

1)點(diǎn)A到原點(diǎn)O的距離為   個(gè)單位長(zhǎng)度;點(diǎn)B到原點(diǎn)O的距離為   個(gè)單位長(zhǎng)度;線段AB的長(zhǎng)度為   個(gè)單位長(zhǎng)度;

2)若點(diǎn)P到點(diǎn)A、點(diǎn)B的距離相等,則點(diǎn)P表示的數(shù)為   ;

3)數(shù)軸上是否存在點(diǎn)P,使得PA+PB的和為6個(gè)單位長(zhǎng)度?若存在,請(qǐng)求出PA的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由?

4)點(diǎn)P從點(diǎn)A出發(fā),以每分鐘1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每分鐘2個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),請(qǐng)直接回答:幾分鐘后點(diǎn)P與點(diǎn)Q重合?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在數(shù)軸上點(diǎn)表示數(shù),點(diǎn)表示數(shù)6

1)A、B兩點(diǎn)之間的距離等于_________;

2)在數(shù)軸上有一個(gè)動(dòng)點(diǎn),它表示的數(shù)是,則的最小值是_________;

3)若點(diǎn)與點(diǎn)之間的距離表示為,點(diǎn)與點(diǎn)之間的距離表示為,請(qǐng)?jiān)跀?shù)軸上找一點(diǎn),使,則點(diǎn)表示的數(shù)是_________;

4)若在原點(diǎn)的左邊2個(gè)單位處放一擋板,一小球甲從點(diǎn)處以5個(gè)單位/秒的速度向右運(yùn)動(dòng);同時(shí)另一小球乙從點(diǎn)處以2個(gè)單位/秒的速度向左運(yùn)動(dòng),在碰到擋板后(忽略球的大小,可看作一點(diǎn))兩球分別以原來(lái)的速度向相反的方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,請(qǐng)用來(lái)表示甲、乙兩小球之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016湖北省咸寧市)如圖,邊長(zhǎng)為4的正方形ABCD內(nèi)接于點(diǎn)O,點(diǎn)E上的一動(dòng)點(diǎn)(不與A、B重合),點(diǎn)F上的一點(diǎn),連接OEOF,分別與AB、BC交于點(diǎn)G,H,且EOF=90°,有以下結(jié)論:

②△OGH是等腰三角形;

四邊形OGBH的面積隨著點(diǎn)E位置的變化而變化;

④△GBH周長(zhǎng)的最小值為

其中正確的是________(把你認(rèn)為正確結(jié)論的序號(hào)都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若拋物線L:y=ax2+bx+c(a,b,c是常數(shù),abc0)與直線l都經(jīng)過y軸上的同一點(diǎn),且拋物線L的頂點(diǎn)在直線l上,則稱次拋物線L與直線l具有一帶一路關(guān)系,并且將直線l叫做拋物線L路線,拋物線L叫做直線l帶線”.

(1)若路線”l的表達(dá)式為y=2x﹣4,它的帶線”L的頂點(diǎn)的橫坐標(biāo)為﹣1,帶線”L的表達(dá)式;

(2)如果拋物線y=mx2﹣2mx+m﹣1與直線y=nx+1具有一帶一路關(guān)系,求m,n的值;

(3)設(shè)(2)中的帶線”L與它的路線”ly軸上的交點(diǎn)為A.已知點(diǎn)P帶線”L上的點(diǎn),當(dāng)以點(diǎn)P為圓心的圓與路線”l相切于點(diǎn)A時(shí),求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案