【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長線上一點,點E在BC邊上,且BE=BD,連結(jié)AE、DE、DC.
①求證:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度數(shù).

【答案】①證明:在△ABE和△CBD中,
,
∴△ABE≌△CBD(SAS);
②解:∵在△ABC中,AB=CB,∠ABC=90°,
∴∠BAC=∠ACB=45°,
由①得:△ABE≌△CBD,
∴∠AEB=∠BDC,
∵∠AEB為△AEC的外角,
∴∠AEB=∠ACB+∠CAE=30°+45°=75°,
則∠BDC=75°.
【解析】①利用SAS即可得證;②由全等三角形對應角相等得到∠AEB=∠CDB,利用外角的性質(zhì)求出∠AEB的度數(shù),即可確定出∠BDC的度數(shù).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某校數(shù)學興趣小組在一次數(shù)學課外活動中,隨機抽查該校10名同學參加今年初中學業(yè)水平考試的體育成績,得到結(jié)果如下表所示:

下列說法正確的是(

A.這10名同學體育成績的中位數(shù)為38分

B.這10名同學體育成績的平均數(shù)為38分

C.這10名同學體育成績的眾數(shù)為39分

D.這10名同學體育成績的方差為2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,點O是邊AC上一個動點,過O作直線MNBC.設MN交ACB的平分線于點E,交ACB的外角平分線于點F.

(1)求證:OE=OF;

(2)若CE=12,CF=5,求OC的長;

(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點O為坐標原點,點A、B、C的坐標分別為A( ,0)、B(3 ,0)、C(0,5),點D在第一象限內(nèi),且∠ADB=60°,則線段CD的長的最小值是(
A.2 ﹣2
B.2
C.2
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在平面直角坐標系中,半徑均為1個單位長度的半圓O1O2,O3,…組成一條平滑的曲線,P從原點O出發(fā),沿這條曲線向右運動速度為每秒個單位長度,則第2018秒時P的坐標是(  )

A. (2016,0) B. (2017,0) C. (2018,0) D. (2017,1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有兩根直桿隔河相對,桿CD30m,桿AB20m,兩桿相距50m.現(xiàn)兩桿上各有一只魚鷹,它們同時看到兩桿之間的河面上E處浮起一條小魚,于是以同樣的速度同時飛下來奪魚,結(jié)果兩只魚鷹同時到達,叼住小魚.問兩桿底部距魚的距離各是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小林沿著筆直的公路靠右勻速行走,發(fā)現(xiàn)每隔5分鐘從背后駛過一輛101路公交車,每隔3分鐘從迎面駛來一輛101路公交車.假設每個每輛101路公交車行駛速度相同,而且101路公交車總站每隔固定時間發(fā)一輛車,那么發(fā)車間隔的時間是( 。

A. 3分鐘 B. 3.75分鐘 C. 4分鐘 D. 5分鐘

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AE⊥BC于點E,延長BC至點F使CF=BE,連結(jié)AF,DE,DF.

(1)求證:四邊形AEFD是矩形;

(2)若AB=6,DE=8,BF=10,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為半圓O在直徑,AD,BC分別切⊙O于A,B兩點,CD切⊙O于點E,連接OD,OC,下列結(jié)論:①∠DOC=90°,②AD+BC=CD,③SAOD:SBOC=AD2:AO2 , ④OD:OC=DE:EC,⑤OD2=DECD,正確的有(

A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

同步練習冊答案