【題目】如圖,正方形ABCD邊長(zhǎng)為8cm,F(xiàn)G是等腰直角△EFG的斜邊,F(xiàn)G=10cm,點(diǎn)B、F、C、G都在直線l上,△EFG以1cm/s的速度沿直線l向右做勻速運(yùn)動(dòng),當(dāng)t=0時(shí),點(diǎn)G與B重合,記t(0≤t≤8)秒時(shí),正方形與三角形重合部分的面積是Scm2 , 則S與t之間的函數(shù)關(guān)系圖象大致為( )
A.
B.
C.
D.
【答案】D
【解析】解:當(dāng)0≤t≤5時(shí),
設(shè)FG與AB交于點(diǎn)H,
∴正方形與三角形重合部分的面積是△BHG的面積,
∴BG=t,
∵∠EGF=45°,
∴BH=BG=t,
∴S= BGBH= t2 ,
當(dāng)5<t≤8時(shí),
設(shè)EF與AB交于點(diǎn)I,
∴正方形與三角形重合部分的面積是四邊形BIEG的面積,
∴BG=t,
∴FB=10﹣t,
∵∠EFG=45°,
∴FB=BI=10﹣t,
又∵△EFG的面積為: =25,
∴S=25﹣ FBBI=25﹣ (10﹣t)2=﹣ t2+10t﹣25,
故選(D)
【考點(diǎn)精析】通過靈活運(yùn)用函數(shù)的圖象,掌握函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對(duì)對(duì)應(yīng)值,他的橫坐標(biāo)x表示自變量的某個(gè)值,縱坐標(biāo)y表示與它對(duì)應(yīng)的函數(shù)值即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次中學(xué)生田徑運(yùn)動(dòng)會(huì)上,根據(jù)參加男子跳高初賽的運(yùn)動(dòng)員的成績(jī)(單位:m),繪制出如下兩幅統(tǒng)計(jì)圖.請(qǐng)根據(jù)相關(guān)信息,解答下列問題:
(1)扇形統(tǒng)計(jì)圖中a= , 初賽成績(jī)?yōu)?.70m所在扇形圖形的圓心角為°;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)這組初賽成績(jī)的眾數(shù)是 m,中位數(shù)是 m;
(4)根據(jù)這組初賽成績(jī)確定8人進(jìn)入復(fù)賽,那么初賽成績(jī)?yōu)?.60m的運(yùn)動(dòng)員楊強(qiáng)能否進(jìn)入復(fù)賽?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生課外閱讀的喜好,某校從八年級(jí)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,調(diào)查要求每人只選取一種喜歡的書籍,如果沒有喜歡的書籍,則作“其它”類統(tǒng)計(jì)。圖(1)與圖(2)是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計(jì)圖。以下結(jié)論不正確的是( )
A. 由這兩個(gè)統(tǒng)計(jì)圖可知喜歡“科普常識(shí)”的學(xué)生有90人.
B. 若該年級(jí)共有1200名學(xué)生,則由這兩個(gè)統(tǒng)計(jì)圖可估計(jì)喜愛“科普常識(shí)”的學(xué)生約有360個(gè).
C. 由這兩個(gè)統(tǒng)計(jì)圖不能確定喜歡“小說”的人數(shù).
D. 在扇形統(tǒng)計(jì)圖中,“漫畫”所在扇形的圓心角為72°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D在邊AB上,點(diǎn)E在邊AC上,CE=BD,連接CD,BE,BE與CD相交于點(diǎn)F.
(1)如圖1,若△ACD為等邊三角形,且CE=DF,求∠CEF的度數(shù);
(2)如圖2,若AC=AD,求證:EF=FB;
(3)如圖3,在(2)的條件下,若∠CFE=45°,△BCD的面積為4,求線段CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道:同弧或等弧所對(duì)的圓周角相等.也就是,如圖(1),⊙O中, 所對(duì)的圓周角∠ACB=∠ADB=∠AEB.
(1)已知:如圖(2),矩形ABCD.
①若AB< BC,在邊AD上求作點(diǎn)P,使∠BPC=90°.(保留作圖痕跡,寫出作法.)
②小明經(jīng)研究發(fā)現(xiàn),當(dāng)AB、BC的大小關(guān)系發(fā)生變化時(shí),①中點(diǎn)P的個(gè)數(shù)也會(huì)發(fā)生變化,請(qǐng)你就點(diǎn)P的個(gè)數(shù),探討AB與BC之間的數(shù)量關(guān)系.(直接寫出結(jié)論)
創(chuàng)新
(2)小明經(jīng)進(jìn)一步研究發(fā)現(xiàn):命題“若四邊形的一組對(duì)邊相等和一組對(duì)角相等,則這個(gè)四邊形是平行四邊形.”是一個(gè)假命題,并在平行四邊形的基礎(chǔ)上利用“同弧或等弧所對(duì)的圓周角相等.”作出了一個(gè)反例圖形.請(qǐng)你利用下面如圖(3)所給的□ABCD作出該反例圖形.(不寫作法,保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,O為AC中點(diǎn),EF過點(diǎn)O且EF⊥AC分別交DC于點(diǎn)F,交AB于點(diǎn)E,點(diǎn)G是AE中點(diǎn)且∠AOG=30°,給出以下結(jié)論: ①∠AFC=120°;
②△AEF是等邊三角形;
③AC=3OG;
④S△AOG= S△ABC
其中正確的是 . (把所有正確結(jié)論的序號(hào)都選上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,BD為⊙O的直徑,BD與AC相交于點(diǎn)H,AC的延長(zhǎng)線與過點(diǎn)B的直線相交于點(diǎn)E,且∠A=∠EBC.
(1)求證:BE是⊙O的切線;
(2)已知CG∥EB,且CG與BD、BA分別相交于點(diǎn)F、G,若BGBA=48,F(xiàn)G= ,DF=2BF,求AH的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)B在直線y=x上運(yùn)動(dòng),當(dāng)線段AB最短時(shí),點(diǎn)B的坐標(biāo)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com