數(shù)軸上到原點的距離等于2的點表示的有理數(shù)是________.

+2和-2
分析:在數(shù)軸上,+2和-2到原點0的距離都等于2,據此進行填空即可.
解答:在數(shù)軸上,到原點的距離等于2的點所表示的有理數(shù)是+2和-2.
故答案為:+2和-2.
點評:主要考查了數(shù)軸,要注意數(shù)軸上距離某個點是一個定值的點有兩個,左右各一個,不要漏掉一種情況.把數(shù)和點對應起來,也就是把“數(shù)”和“形”結合起來,二者互相補充,相輔相成,把很多復雜的問題轉化為簡單的問題,在學習中要注意培養(yǎng)數(shù)形結合的數(shù)學思想.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,有一直徑MN=4的半圓形紙片,其圓心為點P,從初始位置Ⅰ開始,在無滑動的情況下沿數(shù)軸向右翻滾至位置Ⅴ,其中,位置Ⅰ中的MN平行于數(shù)軸,且半⊙P與數(shù)軸相切于原點O;位置Ⅱ和位置Ⅳ中的MN垂直于數(shù)軸;位置Ⅲ中的MN在數(shù)軸上;位置Ⅴ中半⊙P與數(shù)軸相切于點A,且此時△MPA為等邊三角形.
解答下列問題:(各小問結果保留π)
(1)位置Ⅰ中的點O到直線MN的距離為
2
2
;位置Ⅱ中的半⊙P與數(shù)軸的位置關系是
相切
相切
;
(2)位置Ⅲ中的圓心P在數(shù)軸上表示的數(shù)為
π+2
π+2
;
(3)求OA的長.

查看答案和解析>>

科目:初中數(shù)學 來源:數(shù)學教研室 題型:044

請你回憶一下上學期學習的有關絕對值的幾何意義等知識,并解決下列問題:(1)在數(shù)軸上到原點距離等于的點表示實數(shù)________;

2)在數(shù)軸上作出到原點距離小于的點所表示的區(qū)域;

3)解不等式:①   

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本小題滿分10分)
如圖,有一直徑MN=4的半圓形紙片,其圓心為點P,從初始位置Ⅰ開始,在無滑動的情況下沿數(shù)軸向右翻滾至位置Ⅴ,其中,位置Ⅰ中的MN平行于數(shù)軸,且半⊙P與數(shù)軸相切于原點O;位置Ⅱ和位置Ⅳ中的MN垂直于數(shù)軸;位置Ⅲ中的MN在數(shù)軸上;位置Ⅴ中半⊙P與數(shù)軸相切于點A,且此時△MPA為等邊三角形.
解答下列問題:(各小問結果保留π)
(1)位置Ⅰ中的點O到直線MN的距離為   
位置Ⅱ中的半⊙P與數(shù)軸的位置關系是     ;
(2)位置Ⅲ中的圓心P在數(shù)軸上表示的數(shù)為   ;
(3)求OA的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆河北省石家莊市九年級第一次模擬考試數(shù)學卷 題型:選擇題

(本小題滿分10分)

如圖,有一直徑MN=4的半圓形紙片,其圓心為點P,從初始位置Ⅰ開始,在無滑動的情況下沿數(shù)軸向右翻滾至位置Ⅴ,其中,位置Ⅰ中的MN平行于數(shù)軸,且半⊙P與數(shù)軸相切于原點O;位置Ⅱ和位置Ⅳ中的MN垂直于數(shù)軸;位置Ⅲ中的MN在數(shù)軸上;位置Ⅴ中半⊙P與數(shù)軸相切于點A,且此時△MPA為等邊三角形.

解答下列問題:(各小問結果保留π)

(1)位置Ⅰ中的點O到直線MN的距離為    ;

位置Ⅱ中的半⊙P與數(shù)軸的位置關系是      ;

(2)位置Ⅲ中的圓心P在數(shù)軸上表示的數(shù)為   

(3)求OA的長.

 

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012年江蘇省鹽城市射陽縣特庸中學中考數(shù)學一模試卷(解析版) 題型:解答題

如圖,有一直徑MN=4的半圓形紙片,其圓心為點P,從初始位置Ⅰ開始,在無滑動的情況下沿數(shù)軸向右翻滾至位置Ⅴ,其中,位置Ⅰ中的MN平行于數(shù)軸,且半⊙P與數(shù)軸相切于原點O;位置Ⅱ和位置Ⅳ中的MN垂直于數(shù)軸;位置Ⅲ中的MN在數(shù)軸上;位置Ⅴ中半⊙P與數(shù)軸相切于點A,且此時△MPA為等邊三角形.
解答下列問題:(各小問結果保留π)
(1)位置Ⅰ中的點O到直線MN的距離為______;位置Ⅱ中的半⊙P與數(shù)軸的位置關系是______;
(2)位置Ⅲ中的圓心P在數(shù)軸上表示的數(shù)為______;
(3)求OA的長.

查看答案和解析>>

同步練習冊答案