已知:點P是直線MN外一點,點A、B、C是直線MN上三點,分別連接PA、PB、PC.
(1)通過測量的方法,比較PA、PB、PC的大小,直接用“>”連接;
(2)在直線MN上能否找到一點D,使PD的長度最短?如果有,請在圖中作出線段PD,并說明它的理論依據(jù);如果沒有,請說明理由.
分析:(1)根據(jù)測量可直接得出結(jié)論;
(2)過點P作PD⊥MN,根據(jù)點到直線距離的定義可得出結(jié)論.
解答:解:(1)通過測量可知,PA>PB>PC;

(2)過點P作PD⊥MN,則PD最短(垂線段最短).
點評:本題考查的是垂線段最短,熟知從直線外一點到這條直線所作的垂線段最短是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

正方形四邊條邊都相等,四個角都是90°.如圖,已知正方形ABCD在直線MN的上方,BC在直線MN上,點E是直線MN上一點,以AE為邊在直線MN的上方作正方形AEFG.
(1)如圖1,當(dāng)點E在線段BC上(不與點B、C重合)時:
①判斷△ADG與△ABE是否全等,并說明理由;
②過點F作FH⊥MN,垂足為點H,觀察并猜測線段BE與線段CH的數(shù)量關(guān)系,并說明理由;
(2)如圖2,當(dāng)點E在射線CN上(不與點C重合)時:
①判斷△ADG與△ABE是否全等,不需說明理由;
②過點F作FH⊥MN,垂足為點H,已知GD=4,求△CFH的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在Rt△ABC中,∠ACB=90°,BC=6,AC=8,過點A作直線MN⊥AC,點E是直線MN上的一個動點,
(1)如圖1,如果點E是射線AM上的一個動點(不與點A重合),連接CE交AB于點P.若AE為x,AP為y,求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(2)在射線AM上是否存在一點E,使以點E、A、P組成的三角形與△ABC相似,若存在求AE的長,若不存在,請說明理由;
(3)如圖2,過點B作BD⊥MN,垂足為D,以點C為圓心,若以AC為半徑的⊙C與以ED為半徑的⊙E相切,求⊙E的半徑.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•高郵市一模)已知△ABC中,∠ACB=90°,AC=6,BC=8,過點A作直線MN⊥AC,點P是直線MN上的一個動點(與點A不重合),連接CP交AB于點D,設(shè)AP=x,AD=y.

(1)如圖1,若點P在射線AM上,求y與x的函數(shù)解析式;
(2)射線AM上是否存在一點P,使以點D、A、P組成的三角形與△ABC相似,若存在,求AP的長,若不存在,說明理由;
(3)如圖2,過點B作BE⊥MN,垂足為E,以C為圓心、AC為半徑的⊙C與以P為圓心PD為半徑的動⊙P相切,求⊙P的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2002•岳陽)已知:如圖,直線MN和⊙O切于點C,AB是⊙O的直徑,AE⊥MN,BF⊥MN且與⊙O交于點G,垂足分別是E、F,AC是⊙O的弦,
(1)求證:AB=AE+BF;
(2)令A(yù)E=m,EF=n,BF=p,證明:n2=4mp;
(3)設(shè)⊙O的半徑為5,AC=6,求以AE、BF的長為根的一元二次方程;
(4)將直線MN向上平行移動至與⊙O相交時,m、n、p之間有什么關(guān)系?向下平行移動至與⊙O相離時,m、n、p之間又有什么關(guān)系?

查看答案和解析>>

同步練習(xí)冊答案