(2006•南通)如圖,已知△BEC是等邊三角形,∠AEB=∠DEC=90°,AE=DE,AC,BD的交點(diǎn)為O.
(1)求證:△AEC≌△DEB;
(2)若∠ABC=∠DCB=90°,AB=2 cm,求圖中陰影部分的面積.

【答案】分析:(1)在△AEB和△DEC中,已知AE=DE,BE=CE,且?jiàn)A角相等,根據(jù)邊角邊可證全等.
(2)由圖可知,在連接EO并延長(zhǎng)EO交BC于點(diǎn)F,連接AD之后,整個(gè)圖形是一個(gè)以EF所在直線(xiàn)對(duì)稱(chēng)的圖形.即△AEO和△DEO面積相等,只要求出其中一個(gè)即可,而三角形AEO面積=•OE•FB,所以解題中心即為求出OE和FB,有(1)中結(jié)論和已知條件即可求解.
解答:(1)證明:∵∠AEB=∠DEC=90°,
∴∠AEB+∠BEC=∠DEC+∠BEC,即∠AEC=∠DEB,
∵△BEC是等邊三角形,
∴CE=BE,
又AE=DE,
∴△AEC≌△DEB.

(2)解:連接EO并延長(zhǎng)EO交BC于點(diǎn)F,連接AD.由(1)知AC=BD.
∵∠ABC=∠DCB=90°,∴∠ABC+∠DCB=180°,
∴AB∥DC,AB==CD,
∴四邊形ABCD為平行四邊形且是矩形,
∴OA=OB=OC=OD,
又∵BE=CE,
∴OE所在直線(xiàn)垂直平分線(xiàn)段BC,
∴BF=FC,∠EFB=90°.
∴OF=AB=×2=1,
∵△BEC是等邊三角形,
∴∠EBC=60°.
在Rt△AEB中,∠AEB=90°,
∠ABE=∠ABC-∠EBC=90°-60°=30°,
∴BE=AB•cos30°=,
在Rt△BFE中,∠BFE=90°,∠EBF=60°,
∴BF=BE•cos60°=,
EF=BE•sin60°=,
∴OE=EF-OF==,
∵AE=ED,OE=OE,AO=DO,
∴△AOE≌△DOE.∴S△AOE=S△DOE
∴S陰影=2S△AOE=2וEO•BF=2×××=(cm2).
點(diǎn)評(píng):考查綜合應(yīng)用等邊三角形、等腰三角形、解直角三角形、直角三角形性質(zhì),進(jìn)行邏輯推理能力和運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(07)(解析版) 題型:解答題

(2006•南通)如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),B(5,0),M為等腰梯形OBCD底邊OB上一點(diǎn),OD=BC=2,∠DMC=∠DOB=60度.
(1)求點(diǎn)D,B所在直線(xiàn)的函數(shù)表達(dá)式;
(2)求點(diǎn)M的坐標(biāo);
(3)∠DMC繞點(diǎn)M順時(shí)針旋轉(zhuǎn)α(0°<α<30°后,得到∠D1MC1(點(diǎn)D1,C1依次與點(diǎn)D,C對(duì)應(yīng)),射線(xiàn)MD1交邊DC于點(diǎn)E,射線(xiàn)MC1交邊CB于點(diǎn)F,設(shè)DE=m,BF=n.求m與n的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年北京市順義區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2006•南通)如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),B(5,0),M為等腰梯形OBCD底邊OB上一點(diǎn),OD=BC=2,∠DMC=∠DOB=60度.
(1)求點(diǎn)D,B所在直線(xiàn)的函數(shù)表達(dá)式;
(2)求點(diǎn)M的坐標(biāo);
(3)∠DMC繞點(diǎn)M順時(shí)針旋轉(zhuǎn)α(0°<α<30°后,得到∠D1MC1(點(diǎn)D1,C1依次與點(diǎn)D,C對(duì)應(yīng)),射線(xiàn)MD1交邊DC于點(diǎn)E,射線(xiàn)MC1交邊CB于點(diǎn)F,設(shè)DE=m,BF=n.求m與n的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年江蘇省南通市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•南通)如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),B(5,0),M為等腰梯形OBCD底邊OB上一點(diǎn),OD=BC=2,∠DMC=∠DOB=60度.
(1)求點(diǎn)D,B所在直線(xiàn)的函數(shù)表達(dá)式;
(2)求點(diǎn)M的坐標(biāo);
(3)∠DMC繞點(diǎn)M順時(shí)針旋轉(zhuǎn)α(0°<α<30°后,得到∠D1MC1(點(diǎn)D1,C1依次與點(diǎn)D,C對(duì)應(yīng)),射線(xiàn)MD1交邊DC于點(diǎn)E,射線(xiàn)MC1交邊CB于點(diǎn)F,設(shè)DE=m,BF=n.求m與n的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年江蘇省南通市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•南通)如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),B(5,0),M為等腰梯形OBCD底邊OB上一點(diǎn),OD=BC=2,∠DMC=∠DOB=60度.
(1)求點(diǎn)D,B所在直線(xiàn)的函數(shù)表達(dá)式;
(2)求點(diǎn)M的坐標(biāo);
(3)∠DMC繞點(diǎn)M順時(shí)針旋轉(zhuǎn)α(0°<α<30°后,得到∠D1MC1(點(diǎn)D1,C1依次與點(diǎn)D,C對(duì)應(yīng)),射線(xiàn)MD1交邊DC于點(diǎn)E,射線(xiàn)MC1交邊CB于點(diǎn)F,設(shè)DE=m,BF=n.求m與n的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年江蘇省南通市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:填空題

(2006•南通)如圖,直線(xiàn)y=kx(k>0)與雙曲線(xiàn)y=交于A(yíng)(x1,y1),B(x2,y2)兩點(diǎn),則2x1y2-7x2y1的值等于   

查看答案和解析>>

同步練習(xí)冊(cè)答案