精英家教網 > 初中數學 > 題目詳情

【題目】《孫子算經》是中國古代重要的數學著作,其中記載:“今有甲、乙二人,持錢各不知數.甲得乙中半,可滿四十八;乙得甲太半,亦滿四十八。問甲、乙二人原持錢各幾何?”譯文:“甲,乙兩人各有若干錢,如果甲得到乙所有錢的一半,那么甲共有錢48文,如果乙得到甲所有錢的,那么乙也共有錢48文,問甲、乙二人原來各有多少錢?”

【答案】甲原來有36文錢,乙原來有24文錢

【解析】

設甲原有x文錢,則乙原有2(48-x)文錢,根據題意可得甲所有錢的+乙的錢=48文錢,據此列方程可得.

解:設甲原有x文錢,則乙原有2(48-x)文錢,

根據題意,得:x+2(48-x)=48,

解得x=36

2(48-x)=24,

答:甲原來有36文錢,乙原來有24文錢.

故答案為:甲原有36文錢,乙原有24文錢.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】為了解某校學生對《最強大腦》、《朗讀者》、《中國詩詞大會》、《出彩中國人》四個電視節(jié)目的喜愛情況,隨杋抽取了名學生進行調查統(tǒng)計(要求每名學生選出并且只能選出一個自己最喜愛的節(jié)目),并將調查結果繪制成如圖統(tǒng)計圖表:

學生最喜愛的節(jié)目人數統(tǒng)計表

節(jié)目

人數(名)

百分比

最強大腦

朗讀者

中國詩詞大會

出彩中國

根據以上提供的信息,解答下列問題:

1______,_____,____;

2)補全上面的條形統(tǒng)計圖;

3)若該校共有學生5000名,根據抽樣調查結果,估計該校最喜愛《中國詩詞大會》節(jié)目的學生有多少名.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:關于x的方程

(1)求證:m取任何值時,方程總有實根.

(2)若二次函數的圖像關于y軸對稱.

a、求二次函數的解析式

b、已知一次函數,證明:在實數范圍內,對于同一x值,這兩個函數所對應的函數值均成立.

(3)在(2)的條件下,若二次函數的象經過(-5,0),且在實數范圍內,對于x的同一個值,這三個函數所對應的函數值均成立,求二次函數的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知如圖,拋物線軸于兩點(點在點的左側),交軸于點.已知

1)求拋物線的解析式;

2)已知直線,若直線與拋物線有且只有一個交點的面積;

3)在(2)的條件下,拋物線上是否存在點使若存在,請直接寫出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=﹣x+3x軸交于點C,與y軸交于點B,拋物線y=ax2+x+c經過B、C兩點.

1)求拋物線的解析式;

2)如圖,點E是直線BC上方拋物線上的一動點,當△BEC面積最大時,請求出點E的坐標和△BEC面積的最大值?

3)在(2)的結論下,過點Ey軸的平行線交直線BC于點M,連接AM,點Q是拋物線對稱軸上的動點,在拋物線上是否存在點P,使得以P、Q、A、M為頂點的四邊形是平行四邊形?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】隨著近幾年城市建設的快速發(fā)展.某市對花木的需求量逐年提高,某園林專業(yè)戶計劃投資15萬元種植花卉和樹木.根據市場調查與預測,種植樹木的利潤y1(萬元)與投資量x(萬元)成正比例關系,如圖所示;種植花卉的利潤y2(萬元)與投資量x(萬元)的函數關系如圖所示(其中OA是拋物線的一部分,A為拋物線的頂點;AB//x軸)。

(1)求出y1y2關于投資量x的函數關系式

(2)求此專業(yè)戶種植花卉和樹木獲取的總利潤W(萬元)關于投入種植花卉的資金t(萬元)之間的函數關系式:

(3)此專業(yè)戶投入種植花卉的資金為多少萬元時,才能使獲取的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】網絡時代,新興詞匯層出不窮.為了解大眾對網絡詞匯的理解,某興趣小組舉行了一個我是路人甲的調查活動:選取四個熱詞A硬核人生,B好嗨哦,C雙擊666”,D杠精時代在街道上對流動人群進行了抽樣調查,要求被調查的每位只能勾選一個最熟悉的熱詞,根據調查結果,該小組繪制了如下的兩幅不完整的統(tǒng)計圖,請你根據統(tǒng)計圖提供的信息,解答下列問題:

(1)本次調查中,一共調查了   名路人.

(2)補全條形統(tǒng)計圖;

(3)扇形圖中的b=   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明家的門框上裝有一把防盜門鎖(如圖1),其平面結構圖如圖2所示,鎖身可以看成由兩條等弧,和矩形組成的,的圓心是倒鎖按鈕點.已知的弓形高,,.當鎖柄繞著點順時針旋轉至位置時,門鎖打開,此時直線所在的圓相切,且,

1)求所在圓的半徑;

2)求線段的長度.(,結果精確到

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】記:P1=﹣2,P2=(﹣2)×(﹣2),P3=(﹣2)×(﹣2)×(﹣2),…,

1)計算P7÷P8的值;

2)計算2P2019+P2020的值;

3)猜想2PnPn+1的關系,并說明理由.

查看答案和解析>>

同步練習冊答案