【題目】已知,
(1) 如圖1,若BD=DC,點(diǎn)C在AE的垂直平分線上。AB+BD與DE有什么關(guān)系?請(qǐng)給出證明。
(2) 如圖2,若, AB+BD與DE是否還存在(1)中的關(guān)系?若存在,請(qǐng)給出證明,若不存在,請(qǐng)說明理由。
(3) 若,則AB+AE與AD+BE有怎樣的關(guān)系?答:AB+AE AD+BE (填“>”,“<”或“=”)
【答案】(1)AB+BD=DE,理由見解析;(2)仍然成立,理由見解析;(3)<.
【解析】
(1)分別根據(jù)AD垂直平分BC和C在AE的垂直平分線上證明AB=AC=CE,BD=CD,由此可得AB+BD=DE;
(2)在DE上取點(diǎn)M,使BD=DM,根據(jù)AD⊥BM,BD=MD可證明∠B=∠AMB,再根據(jù)可證明∠MAE=∠E,由此可證明AM=ME=AB,即可證明AB+BD =DE;
(3)通過勾股定理可得,通過等面積法可得,再由完全平方公式可推理出,由此可證.
(1)AB+BD=DE,理由如下:
∵C在AE的垂直平分線上
∴AC=CE
又∵AD⊥BC,BD=CD
∴AD垂直平分BC
∴AB=AC, BD =CD
∴AB= CE
∴AB+BD=CE+CD=DE;
(2)仍然成立,理由如下:
如圖,在DE上取點(diǎn)M,使BD=DM,連接AM
∵AD⊥BM,BD=MD,
∴AB=AM,
∴∠B=∠AMB=2∠E=∠E+∠MAE
∴∠MAE=∠E
∴AM=ME=AB
∴AB+BD=ME+DM=DE;
(3)∵,
∴在△ABE中根據(jù)勾股定理可得
由直角三角形的面積公式可得
即
∴
∵
∴,
∵線段的長(zhǎng)度皆為正
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司計(jì)劃從甲、乙兩種產(chǎn)品中選擇一種生產(chǎn)并銷售,每年產(chǎn)銷 x 件,已知產(chǎn)銷兩種產(chǎn)品的有關(guān)信息 如下:
產(chǎn)品 | 每件售價(jià)/萬元 | 每件成本/萬元 | 年最大產(chǎn)銷量/件 |
甲 | 6 | 3 | 200 |
乙 | 20 | 10 | 80 |
甲、乙兩產(chǎn)品每年的其他費(fèi)用與產(chǎn)銷量的關(guān)系分別是: y1 kx b 和 y2 ax2 m ,它們的函數(shù)圖象分別如圖(1)和圖(2)所示.
(1)求: y1 、 y2 的函數(shù)解析式;
(2)分別求出產(chǎn)銷兩種產(chǎn)品的最大利潤(rùn);(利潤(rùn)=銷售額-成本-其它費(fèi)用)
(3)若通過技術(shù)改進(jìn),甲產(chǎn)品的每件成本降到 a 萬元,乙產(chǎn)品的年最大產(chǎn)銷量可以達(dá)到 110 件,其它都不變,為獲得最大利潤(rùn),該公式應(yīng)該選擇產(chǎn)銷哪種產(chǎn)品?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個(gè)動(dòng)點(diǎn),其中點(diǎn)P從點(diǎn)A開始沿A→B方向運(yùn)動(dòng),且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開始沿B→C→A方向運(yùn)動(dòng),且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為t秒.
(1)出發(fā)2秒后,求PQ的長(zhǎng).
(2)當(dāng)點(diǎn)Q在邊BC上運(yùn)動(dòng)時(shí),出發(fā)幾秒鐘后,△PQB能形成等腰三角形?
(3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),求能使△BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在圓⊙O內(nèi)有折線OABC,其中OA=8,AB=12,∠A=∠B=60°,則BC的長(zhǎng)為( 。
A. 19 B. 16 C. 18 D. 20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,Rt△ABC≌Rt△DFE,其中∠ACB=∠DFE=90°,BC=EF.
(1)若兩個(gè)三角形按圖2方式放置,AC、DF交于點(diǎn)O,連接AD、BO,則AF與CD的數(shù)量關(guān)系為 ,BO與AD的位置關(guān)系為 ;
(2)若兩個(gè)三角形按圖3方式放置,其中C、B(D)、F在一條直線上,連接AE,M為AE中點(diǎn),連接FM、CM.探究線段FM與CM之間的關(guān)系,并證明;
(3)若兩個(gè)三角形按圖4方式放置,其中B、C(D)、F在一條直線上,點(diǎn)G、H分別為FC、AC的中點(diǎn),連接GH、BE交于點(diǎn)K,求證:BK=EK.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點(diǎn)D在AB上,AD=AC,AF⊥CD交CD于點(diǎn)E,交CB于點(diǎn)F,則CF的長(zhǎng)是(。
A.1.5B.1.8C.2D.2.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,經(jīng)過原點(diǎn)O的拋物線(a≠0)與x軸交于另一點(diǎn)A(,0),在第一象限內(nèi)與直線y=x交于點(diǎn)B(2,t).
(1)求這條拋物線的表達(dá)式;
(2)在第四象限內(nèi)的拋物線上有一點(diǎn)C,滿足以B,O,C為頂點(diǎn)的三角形的面積為2,求點(diǎn)C的坐標(biāo);
(3)如圖2,若點(diǎn)M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點(diǎn)P,使得△POC∽△MOB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的轉(zhuǎn)盤,分成三個(gè)相同的扇形,指針位置固定轉(zhuǎn)動(dòng)轉(zhuǎn)盤后任其自由停止,其中的某個(gè)扇形會(huì)恰好停在指針?biāo)傅奈恢,并相?yīng)得到一個(gè)數(shù)(指針指向兩個(gè)扇形的交線時(shí),當(dāng)作指向右邊的扇形).
(1)求事件“轉(zhuǎn)動(dòng)一次,得到的數(shù)恰好是0”發(fā)生的概率;
(2)寫出此情景下一個(gè)不可能發(fā)生的事件.
(3)用樹狀圖或列表法,求事件“轉(zhuǎn)動(dòng)兩次,第一次得到的數(shù)與第二次得到的數(shù)絕對(duì)值相等”發(fā)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)拋物線型蔬菜大棚,將其截面放在如圖所示的平面直角坐標(biāo)系中,拋物線可以用函數(shù)y=ax2+bx來表示.已知大棚在地面上的寬度OA為8米,距離O點(diǎn)2米處的棚高BC為米.
(1)求該拋物線的函數(shù)關(guān)系式;
(2)若借助橫梁DE建一個(gè)門,要求門的高度不低于1.5米,則橫梁DE的寬度最多是多少米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com