15、若四邊形ABCD為等腰梯形,則四個內(nèi)角∠A、∠B、∠C、∠D之比可能為( 。
分析:根據(jù)等腰梯形的性質(zhì)對四個選項逐個對照即可求解.
解答:解:∵四邊形ABCD為等腰梯形
∴∠A=∠C,∠B=∠D
∴四個內(nèi)角∠A、∠B、∠C、∠D之比只能為四選項中的D.
故選D.
點評:根據(jù)等腰梯形的性質(zhì)求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

21、如圖1,△ABD和△AEC均為等邊三角形,連接BE、CD.

(1)請判斷:線段BE與CD的大小關(guān)系是
BE=CD
;
(2)觀察圖2,當△ABD和△AEC分別繞點A旋轉(zhuǎn)時,BE、CD之間的大小關(guān)系是否會改變?

(3)觀察圖3和4,若四邊形ABCD、DEFG都是正方形,猜想類似的結(jié)論是
AE=CG
,在圖4中證明你的猜想;


(4)這些結(jié)論可否推廣到任意正多邊形(不必證明),如圖5,BB1與EE1的關(guān)系是
BB1=EE1
;它們分別在哪兩個全等三角形中
△AE1E和△AB1B中
;請在圖6中標出較小的正六邊形AB1C1D1E1F1的另五個頂點,連接圖中哪兩個頂點,能構(gòu)造出兩個全等三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

探究問題:
(1)閱讀理解:
①如圖(A),在已知△ABC所在平面上存在一點P,使它到三角形頂點的距離之和最小,則稱點P為△ABC的費馬點,此時PA+PB+PC的值為△ABC的費馬距離;
②如圖(B),若四邊形ABCD的四個頂點在同一圓上,則有AB•CD+BC•DA=AC•BD.此為托勒密定理;
精英家教網(wǎng)
(2)知識遷移:
①請你利用托勒密定理,解決如下問題:
如圖(C),已知點P為等邊△ABC外接圓的
BC
上任意一點.求證:PB+PC=PA;
②根據(jù)(2)①的結(jié)論,我們有如下探尋△ABC(其中∠A、∠B、∠C均小于120°)的費馬點和費馬距離的方法:
第一步:如圖(D),在△ABC的外部以BC為邊長作等邊△BCD及其外接圓;
第二步:在
BC
上任取一點P′,連接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+
 
;
第三步:請你根據(jù)(1)①中定義,在圖(D)中找出△ABC的費馬點P,并請指出線段
 
的長度即為△ABC的費馬距離.
精英家教網(wǎng)
(3)知識應用:
2010年4月,我國西南地區(qū)出現(xiàn)了罕見的持續(xù)干旱現(xiàn)象,許多村莊出現(xiàn)了人、畜飲水困難,為解決老百姓的飲水問題,解放軍某部來到云南某地打井取水.
已知三村莊A、B、C構(gòu)成了如圖(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),現(xiàn)選取一點P打水井,使從水井P到三村莊A、B、C所鋪設的輸水管總長度最小,求輸水管總長度的最小值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖(1),四邊形ABCD內(nèi)部有一點P,使得S△APD+S△BPC=S△PAB+S△PCD,那么這樣的點P叫做四邊形ABCD的等積點.
(1)如果四邊形ABCD內(nèi)部所有的點都是等積點,那么這樣的四邊形叫做等積四邊形.
①請寫出你知道的等積四邊形:
 
,
 
 
,
 
,(四例)
②如圖(2),若四邊形ABCD是平行四邊形且S△ABP=8,S△APD=7,S△BPC=15,則S△PCD=
 

(2)如圖(3),等腰梯形ABCD,AD=4,BC=10,AB=5,直線l為等腰梯形的對稱軸,分別交AD于點E,交BC于點F.
①請在直線l上找到等腰梯形的等積點,并求出PE的長度.
②請找出等腰梯形ABCD內(nèi)部所有的等積點,并畫圖表示.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2008•朝陽區(qū)一模)我們給出如下定義:若一個四邊形中存在一組對邊的平方和等于另一組對邊的平方和,則稱這個四邊形為等平方和四邊形,
(1)寫出一個你所學過的特殊四邊形中是等平方和四邊形的圖形的名稱:
菱形或正方形
菱形或正方形

(2)如圖(1),在梯形ABCD中,AD∥BC,AC⊥BD,垂足為O.求證:AD2+BC2=AB2+DC2,即四邊形ABCD是等平方和四邊形.

(3)如果將圖(1)中的△AOD繞點O按逆時針方向旋轉(zhuǎn)α度(0<α<90)后得到圖(2),那么四邊形ABCD能否成為等平方和四邊形?若能,請你證明;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,四邊形ABCD是由兩個全等的等腰直角三角形斜邊重合在一起組成的平面圖形.如圖2,點P是邊BC上一點,PH⊥BC交BD于點H,連接AP交BD于點E,點F為DH中點,連接AF.
(1)求證:四邊形ABCD為正方形;
(2)當點P在線段BC上運動時,∠PAF的大小是否會發(fā)生變化?若不變,請求出∠PAF的值;若變化,請說明理由;
(3)求證:BE2+DF2=EF2

查看答案和解析>>

同步練習冊答案