(2002•麗水)如圖,PT是半徑為4的⊙O的一條切線,切點為T,PBA是經(jīng)過圓心的一條割線,若B是OP的中點,則PT的長是   
【答案】分析:根據(jù)題意,得PB=4,PA=12;再根據(jù)切割線定理得PT2=PB•PA,即可求得PT的值.
解答:解:∵半徑為4,B是OP的中點,
∴PB=4,PA=12,
∵PT2=PB•PA,
∴PT=4
點評:此題主要是考查了切割線定理的運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2002•麗水)如圖,直線y1=kx+b經(jīng)過點P(5,3),且分別與已知直線y2=3x交于點A、與x軸交于點B.設(shè)點A的橫坐標為m(m>1且m≠5).
(1)用含m的代數(shù)式表示k;
(2)寫出△AOB的面積S關(guān)于m的函數(shù)解析式;
(3)在直線y2=3x上是否存在點A,使得△AOB面積最小?若存在,請求出點A的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年浙江省麗水市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•麗水)如圖,直線y1=kx+b經(jīng)過點P(5,3),且分別與已知直線y2=3x交于點A、與x軸交于點B.設(shè)點A的橫坐標為m(m>1且m≠5).
(1)用含m的代數(shù)式表示k;
(2)寫出△AOB的面積S關(guān)于m的函數(shù)解析式;
(3)在直線y2=3x上是否存在點A,使得△AOB面積最小?若存在,請求出點A的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《圖形的相似》(02)(解析版) 題型:選擇題

(2002•麗水)如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于點D,CD=2,BD=1,則AD的長是( )

A.1
B.
C.2
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年浙江省麗水市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2002•麗水)如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于點D,CD=2,BD=1,則AD的長是( )

A.1
B.
C.2
D.4

查看答案和解析>>

同步練習(xí)冊答案