【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸交于點(diǎn)B,與y軸交于點(diǎn)A,與反比例函數(shù)y= 的圖象在第二象限交于點(diǎn)C,CE⊥x軸,垂足為點(diǎn)E,tan∠ABO= ,OB=4,OE=2.

(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)D是反比例函數(shù)圖象在第四象限上的點(diǎn),過(guò)點(diǎn)D作DF⊥y軸,垂足為點(diǎn)F,連接OD、BF.如果SBAF=4SDFO , 求點(diǎn)D的坐標(biāo).

【答案】
(1)

解:∵OB=4,OE=2,

∴BE=OB+OE=6.

∵CE⊥x軸,

∴∠CEB=90°.

在Rt△BEC中,∠CEB=90°,BE=6,tan∠ABO= ,

∴CE=BEtan∠ABO=6× =3,

結(jié)合函數(shù)圖象可知點(diǎn)C的坐標(biāo)為(﹣2,3).

∵點(diǎn)C在反比例函數(shù)y= 的圖象上,

∴m=﹣2×3=﹣6,

∴反比例函數(shù)的解析式為y=﹣


(2)

解:∵點(diǎn)D在反比例函數(shù)y=﹣ 第四象限的圖象上,

∴設(shè)點(diǎn)D的坐標(biāo)為(n,﹣ )(n>0).

在Rt△AOB中,∠AOB=90°,OB=4,tan∠ABO= ,

∴OA=OBtan∠ABO=4× =2.

∵SBAF= AFOB= (OA+OF)OB= (2+ )×4=4+

∵點(diǎn)D在反比例函數(shù)y=﹣ 第四象限的圖象上,

∴SDFO= ×|﹣6|=3.

∵SBAF=4SDFO,

∴4+ =4×3,

解得:n=

經(jīng)驗(yàn)證,n= 是分式方程4+ =4×3的解,

∴點(diǎn)D的坐標(biāo)為( ,﹣4).


【解析】本題考查了解直角三角形、反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、三角形的面積公式以及反比例函數(shù)系數(shù)k的幾何意義,解題的關(guān)鍵是:(1)求出點(diǎn)C的坐標(biāo);(2) 根據(jù)三角形的面積間的關(guān)系找出關(guān)于n的分式方程.本題屬于中檔題,難度不大,但較繁瑣,解決該題型題目時(shí),找出點(diǎn)的坐標(biāo),再利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo) 特征求出反比例函數(shù)系數(shù)是關(guān)鍵.(1)由邊的關(guān)系可得出BE=6,通過(guò)解直角三角形可得出CE=3,結(jié)合函數(shù)圖象即可得出點(diǎn)C的坐標(biāo),再根據(jù)點(diǎn)C的坐標(biāo)利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,即可求出反比例函數(shù)系數(shù)m,由此即可得出結(jié)論;(2)由點(diǎn)D在反比例函數(shù)在第四象限的圖象上,設(shè)出點(diǎn)D的坐標(biāo)為(n,﹣ )(n>0).通過(guò)解直角三角形求出線段OA的長(zhǎng)度,再利用三角形的面積公式利用含n的代數(shù)式表示出SBAF , 根據(jù)點(diǎn)D在反比例函數(shù)圖形上利用反比例函數(shù)系數(shù)k的幾何意義即可得出SDFO的值,結(jié)合題意給出的兩三角形的面積間的關(guān)系即可得出關(guān)于n的分式方程,解方程,即可得出n值,從而得出點(diǎn)D的坐標(biāo).
【考點(diǎn)精析】本題主要考查了比例系數(shù)k的幾何意義的相關(guān)知識(shí)點(diǎn),需要掌握幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形中,,且,分別以、AB、為邊向梯形外作正方形,其面積分別為、、,則、、之間數(shù)量的關(guān)系是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是菱形,對(duì)角線AC、BD相交于點(diǎn)ODHAB于點(diǎn)H,連接OH,∠CAD=35°,則∠HOB的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)E為正方形ABCDBC上的一點(diǎn),點(diǎn)GBC延長(zhǎng)線一點(diǎn),連接AE,過(guò)點(diǎn)EAEEF,且AE=EF,連接CF

1)如圖1,求證:∠FCG=45°,

2)如圖2,過(guò)點(diǎn)DDH//EFAB于點(diǎn)H,連接HE,求證:;

3)如圖3,連接AF、DF,若AFCD于點(diǎn)MDM=2,BH=3,求DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,點(diǎn)O是等邊三角形ABC的中心,射線OEAB邊于點(diǎn)EOFBC邊于點(diǎn)F,若ABC的面積為S,∠EOF120°,則當(dāng)∠EOF繞點(diǎn)O旋轉(zhuǎn)時(shí),得到的陰影面積發(fā)生變化嗎?下面有三名同學(xué)提出了各自的觀點(diǎn).

甲:陰影部分的面積會(huì)發(fā)生變化,且當(dāng)OEOF分別與ABC的邊垂直時(shí),陰影部分的面積最小.

乙:陰影部分的面積會(huì)發(fā)生變化,且當(dāng)EF分別與ABC的頂點(diǎn)重合時(shí),陰影部分的面積最大.

丙:無(wú)論怎樣旋轉(zhuǎn),陰影部分的面積都保持不變.

你支持誰(shuí)的觀點(diǎn)?____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】霧霾天氣持續(xù)籠罩我國(guó)大部分地區(qū),困擾著廣大市民的生活,口罩市場(chǎng)出現(xiàn)熱銷,小明的爸爸用12000元購(gòu)進(jìn)甲、乙兩種型號(hào)的口罩在自家商店銷售,銷售完后共獲利2700元,進(jìn)價(jià)和售價(jià)如表:

1)小明爸爸的商店購(gòu)進(jìn)甲、乙兩種型號(hào)口罩各多少袋?

2)該商店第二次以原價(jià)購(gòu)進(jìn)甲、乙兩種型號(hào)口罩,購(gòu)進(jìn)甲種型號(hào)口罩袋數(shù)不變,而購(gòu)進(jìn)乙種型號(hào)口罩袋數(shù)是第一次的2倍,甲種口罩按原售價(jià)出售,而效果更好的乙種口罩打折讓利銷售,若兩種型號(hào)的口罩全部售完,要使第二次銷售活動(dòng)獲利不少于2460元,每袋乙種型號(hào)的口罩最多打幾折?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一方有難八方支援,某市政府籌集了抗旱必需物資120噸打算運(yùn)往災(zāi)區(qū),現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運(yùn)載能力和運(yùn)費(fèi)如下表所示:(假設(shè)每輛車均滿載)

(1)若全部物資都用甲、乙兩種車型來(lái)運(yùn)送,需運(yùn)費(fèi)8200元,問(wèn)分別需甲、乙兩種車型各幾輛?

(2)為了節(jié)約運(yùn)費(fèi),該市政府可以調(diào)用甲、乙、丙三種車型參與運(yùn)送,已知它們的總輛數(shù)為 16輛,你能通過(guò)列方程組的方法分別求出幾種車型的輛數(shù)嗎?

(3)求出哪種方案的運(yùn)費(fèi)最省?最省是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是潛望鏡工作原理示意圖,陰影部分是平行放置在潛望鏡里的兩面鏡子.已知光線經(jīng)過(guò)鏡子反射時(shí),有∠1=∠2,∠3=∠4,請(qǐng)解釋進(jìn)入潛望鏡的光線l為什么和離開(kāi)潛望鏡的光線m是平行的?

請(qǐng)把下列解題過(guò)程補(bǔ)充完整.

理由:

因?yàn)?/span>ABCD,

根據(jù)   ,

所以∠2=∠3

因?yàn)椤?/span>1=∠2,∠3=∠4,

所以∠1=∠2=∠3=∠4

所以180°﹣∠1﹣∠2180°﹣∠3﹣∠4,

即:   

根據(jù)   ,

所以lm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下面證明:

(1)如圖1,已知直線bc,ac,求證:ab.

證明:∵ac (已知)

∴∠1=      (垂直定義)

bc (已知)

∴∠1=∠2 (       

∴∠2=∠1=90° (      

ab       

(2)如圖2:ABCD,∠B+∠D=180°,求證:CBDE

證明:∵ABCD (已知)

∴∠B=             

∵∠B+∠D=180° (已知)

∴∠C+∠D=180° (       

CBDE       

查看答案和解析>>

同步練習(xí)冊(cè)答案