【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸交于點(diǎn)B,與y軸交于點(diǎn)A,與反比例函數(shù)y= 的圖象在第二象限交于點(diǎn)C,CE⊥x軸,垂足為點(diǎn)E,tan∠ABO= ,OB=4,OE=2.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)D是反比例函數(shù)圖象在第四象限上的點(diǎn),過(guò)點(diǎn)D作DF⊥y軸,垂足為點(diǎn)F,連接OD、BF.如果S△BAF=4S△DFO , 求點(diǎn)D的坐標(biāo).
【答案】
(1)
解:∵OB=4,OE=2,
∴BE=OB+OE=6.
∵CE⊥x軸,
∴∠CEB=90°.
在Rt△BEC中,∠CEB=90°,BE=6,tan∠ABO= ,
∴CE=BEtan∠ABO=6× =3,
結(jié)合函數(shù)圖象可知點(diǎn)C的坐標(biāo)為(﹣2,3).
∵點(diǎn)C在反比例函數(shù)y= 的圖象上,
∴m=﹣2×3=﹣6,
∴反比例函數(shù)的解析式為y=﹣ .
(2)
解:∵點(diǎn)D在反比例函數(shù)y=﹣ 第四象限的圖象上,
∴設(shè)點(diǎn)D的坐標(biāo)為(n,﹣ )(n>0).
在Rt△AOB中,∠AOB=90°,OB=4,tan∠ABO= ,
∴OA=OBtan∠ABO=4× =2.
∵S△BAF= AFOB= (OA+OF)OB= (2+ )×4=4+ .
∵點(diǎn)D在反比例函數(shù)y=﹣ 第四象限的圖象上,
∴S△DFO= ×|﹣6|=3.
∵S△BAF=4S△DFO,
∴4+ =4×3,
解得:n= ,
經(jīng)驗(yàn)證,n= 是分式方程4+ =4×3的解,
∴點(diǎn)D的坐標(biāo)為( ,﹣4).
【解析】本題考查了解直角三角形、反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、三角形的面積公式以及反比例函數(shù)系數(shù)k的幾何意義,解題的關(guān)鍵是:(1)求出點(diǎn)C的坐標(biāo);(2) 根據(jù)三角形的面積間的關(guān)系找出關(guān)于n的分式方程.本題屬于中檔題,難度不大,但較繁瑣,解決該題型題目時(shí),找出點(diǎn)的坐標(biāo),再利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo) 特征求出反比例函數(shù)系數(shù)是關(guān)鍵.(1)由邊的關(guān)系可得出BE=6,通過(guò)解直角三角形可得出CE=3,結(jié)合函數(shù)圖象即可得出點(diǎn)C的坐標(biāo),再根據(jù)點(diǎn)C的坐標(biāo)利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,即可求出反比例函數(shù)系數(shù)m,由此即可得出結(jié)論;(2)由點(diǎn)D在反比例函數(shù)在第四象限的圖象上,設(shè)出點(diǎn)D的坐標(biāo)為(n,﹣ )(n>0).通過(guò)解直角三角形求出線段OA的長(zhǎng)度,再利用三角形的面積公式利用含n的代數(shù)式表示出S△BAF , 根據(jù)點(diǎn)D在反比例函數(shù)圖形上利用反比例函數(shù)系數(shù)k的幾何意義即可得出S△DFO的值,結(jié)合題意給出的兩三角形的面積間的關(guān)系即可得出關(guān)于n的分式方程,解方程,即可得出n值,從而得出點(diǎn)D的坐標(biāo).
【考點(diǎn)精析】本題主要考查了比例系數(shù)k的幾何意義的相關(guān)知識(shí)點(diǎn),需要掌握幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形中,,,且,分別以、AB、為邊向梯形外作正方形,其面積分別為、、,則、、之間數(shù)量的關(guān)系是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是菱形,對(duì)角線AC、BD相交于點(diǎn)O,DH⊥AB于點(diǎn)H,連接OH,∠CAD=35°,則∠HOB的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)E為正方形ABCD邊BC上的一點(diǎn),點(diǎn)G為BC延長(zhǎng)線一點(diǎn),連接AE,過(guò)點(diǎn)E作AE⊥EF,且AE=EF,連接CF.
(1)如圖1,求證:∠FCG=45°,
(2)如圖2,過(guò)點(diǎn)D作DH//EF交AB于點(diǎn)H,連接HE,求證:;
(3)如圖3,連接AF、DF,若AF交CD于點(diǎn)M,DM=2,BH=3,求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,點(diǎn)O是等邊三角形ABC的中心,射線OE交AB邊于點(diǎn)E,OF交BC邊于點(diǎn)F,若△ABC的面積為S,∠EOF=120°,則當(dāng)∠EOF繞點(diǎn)O旋轉(zhuǎn)時(shí),得到的陰影面積發(fā)生變化嗎?下面有三名同學(xué)提出了各自的觀點(diǎn).
甲:陰影部分的面積會(huì)發(fā)生變化,且當(dāng)OE,OF分別與△ABC的邊垂直時(shí),陰影部分的面積最小.
乙:陰影部分的面積會(huì)發(fā)生變化,且當(dāng)E,F分別與△ABC的頂點(diǎn)重合時(shí),陰影部分的面積最大.
丙:無(wú)論怎樣旋轉(zhuǎn),陰影部分的面積都保持不變.
你支持誰(shuí)的觀點(diǎn)?____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】霧霾天氣持續(xù)籠罩我國(guó)大部分地區(qū),困擾著廣大市民的生活,口罩市場(chǎng)出現(xiàn)熱銷,小明的爸爸用12000元購(gòu)進(jìn)甲、乙兩種型號(hào)的口罩在自家商店銷售,銷售完后共獲利2700元,進(jìn)價(jià)和售價(jià)如表:
(1)小明爸爸的商店購(gòu)進(jìn)甲、乙兩種型號(hào)口罩各多少袋?
(2)該商店第二次以原價(jià)購(gòu)進(jìn)甲、乙兩種型號(hào)口罩,購(gòu)進(jìn)甲種型號(hào)口罩袋數(shù)不變,而購(gòu)進(jìn)乙種型號(hào)口罩袋數(shù)是第一次的2倍,甲種口罩按原售價(jià)出售,而效果更好的乙種口罩打折讓利銷售,若兩種型號(hào)的口罩全部售完,要使第二次銷售活動(dòng)獲利不少于2460元,每袋乙種型號(hào)的口罩最多打幾折?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一方有難八方支援,某市政府籌集了抗旱必需物資120噸打算運(yùn)往災(zāi)區(qū),現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運(yùn)載能力和運(yùn)費(fèi)如下表所示:(假設(shè)每輛車均滿載)
(1)若全部物資都用甲、乙兩種車型來(lái)運(yùn)送,需運(yùn)費(fèi)8200元,問(wèn)分別需甲、乙兩種車型各幾輛?
(2)為了節(jié)約運(yùn)費(fèi),該市政府可以調(diào)用甲、乙、丙三種車型參與運(yùn)送,已知它們的總輛數(shù)為 16輛,你能通過(guò)列方程組的方法分別求出幾種車型的輛數(shù)嗎?
(3)求出哪種方案的運(yùn)費(fèi)最省?最省是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是潛望鏡工作原理示意圖,陰影部分是平行放置在潛望鏡里的兩面鏡子.已知光線經(jīng)過(guò)鏡子反射時(shí),有∠1=∠2,∠3=∠4,請(qǐng)解釋進(jìn)入潛望鏡的光線l為什么和離開(kāi)潛望鏡的光線m是平行的?
請(qǐng)把下列解題過(guò)程補(bǔ)充完整.
理由:
因?yàn)?/span>AB∥CD,
根據(jù)“ ”,
所以∠2=∠3.
因?yàn)椤?/span>1=∠2,∠3=∠4,
所以∠1=∠2=∠3=∠4,
所以180°﹣∠1﹣∠2=180°﹣∠3﹣∠4,
即: .
根據(jù)“ ”,
所以l∥m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面證明:
(1)如圖1,已知直線b∥c,a⊥c,求證:a⊥b.
證明:∵a⊥c (已知)
∴∠1= (垂直定義)
∵b∥c (已知)
∴∠1=∠2 ( )
∴∠2=∠1=90° ( )
∴a⊥b ( )
(2)如圖2:AB∥CD,∠B+∠D=180°,求證:CB∥DE.
證明:∵AB∥CD (已知)
∴∠B= ( )
∵∠B+∠D=180° (已知)
∴∠C+∠D=180° ( )
∴CB∥DE ( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com