【題目】(1)如圖,∠MON=80°,點A、B分別在射線OM、ON上移動,△AOB的角平分線AC與BD交于點P.試問:隨著點A、B位置的變化,∠APB的大小是否會變化?若保持不變,請求出∠APB的度數;若發(fā)生變化,求出變化范圍.
(2)兩條相交的直線OX、OY,使∠XOY=n,在射線OX、OY上分別再任意取A、B兩點,作∠ABY的平分線BD,BD的反向延長線交∠OAB的平分線于點C,隨著點A、B位置的變化,∠C的大小是否會變化?若保持不變,請求出∠C的度數;若發(fā)生變化,求出變化范圍.
【答案】(1)∠APB的大小不變;∠APB=130°;(2)∠C的大小不變;∠C=.
【解析】
(1)根據角平分線的定義得到∠OAC=∠BAC,∠OBD=∠ABD,進而由三角形的內角和得到2x+2y=100°,即x+y=50°,再根據三角形內角和是180°即可求解;
(2)令∠OAC=∠CAB=x,∠ABD=∠BDY=y,再根據三角形的外角性質即可求解.
解:(1)∵AC,BD平分∠OAB與∠OBA
∴∠OAC=∠BAC,∠OBD=∠ABD,
設∠OAC=∠BAC=x,∠OBD=∠ABD=y,
∵∠MON =80°
∴由內角和定理得2x+2y=100°
∴x+y=50°
∵∠APB=180°-(x+y)
∴∠APB=130°
∴∠APB的大小不變.
(2)由題意,設∠CAO=∠CAB=x,∠ABD=∠DBY=y,
∵∠ABY是△AOB的外角,
∴2y= n +2x,
同理,∠ABD是△ABC的外角,則y=∠C+x,
∴∠C=,所以∠C的大小不變.
科目:初中數學 來源: 題型:
【題目】給出下列命題:
①三角形的三條高相交于一點;
②如果一組數據中有一個數據變動,那么它的平均數、眾數、中位數都隨之變動;
③如果不等式的解集為,那么;
④如果三角形的一個外角等于與它相鄰的一個內角則這個三角形是直角三角形;
其中正確的命題有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,點坐標為,點的坐標為.
(1)求直線的解析式;
(2)點是坐標軸上的一個點,若為直角邊構造直角三角形,請求出滿足條件的所有點的坐標;
(3)如圖 2,以點為直角頂點作,射線交軸的負半軸與點,射線交軸的負半軸與點,當繞點旋轉時,的值是否發(fā)生變化?若不變,直接寫出它的值;若變化,直接寫出它的變化范圍(不要解題過程) .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2﹣2ax+c(a≠0)交x軸于A,B兩點,A點坐標為(3,0),與y軸交于點C(0,4),以OC、OA為邊作矩形OADC交拋物線于點G.
(1)求拋物線的解析式;
(2)拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標為m,請用含m的代數式表示PM的長;
(3)在(2)的條件下,連結PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一副三角板按如圖所示疊放在一起,若固定,將繞著公共頂點,按順時針方向旋轉度,當的一邊與的某一邊平行時,相應的旋轉角的度數為_________________。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了貫徹落實國家關于增強青少年體質的計劃,鄂州市全面實施了義務教育學段中小學學生“飲用奶計劃”的營養(yǎng)工程.某牛奶供應商擬提供A(原味)、B(草莓味)、C(核桃味)、D(菠蘿味)、E(香橙味)等五種口味的學生奶供學生選擇(所有學生奶盒形狀、大小相同),為了解對學生奶口味的喜好情況,某初級中學七年級(1)班李老師對全班同學進行了調查統(tǒng)計,制成了如圖兩幅不完整的統(tǒng)計圖.
(1)該班五種口味的學生奶的喜好人數組成一組統(tǒng)計數據,直接寫出這組數據的平均數,并將折線統(tǒng)計圖補充完整.
(2)在進行調查統(tǒng)計的第二天,李老師為班上每位同學發(fā)放一盒學生奶.喜好A味的小聰和喜好B味的小明等四位同學最后領取,剩余的學生奶放在同一紙箱里,分別有A味2盒,B味和C味各1盒,李老師從該紙箱里隨機取出兩盒學生奶.請你用列表法或畫樹狀圖的方法,求出這兩盒牛奶恰好同時是小聰和小明喜好的學生奶的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知A(﹣2,0),C(0,4),點O′為x軸上一點,⊙O′過A,C兩點交x軸于另一點B.
(1)求點O′的坐標;
(2)已知拋物線y=ax2+bx+c過A,B,C三點,且與⊙O′交于另一點E,求拋物線的解析式,并直接寫出點E 坐標;
(3)設點P(t,0)是線段OB上一個動點,過點P作直線l⊥x軸,交線段BC于F,交拋物線y=ax2+bx+c于點G,請用t表示四邊形BPCG的面積S;
(4)在(3)的條件下,四邊形BPCG能否為平行四邊形?若能,請求出t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,P是Rt△ABC的斜邊BC上異于B,C的一點,過P點作直線截△ABC,使截得的三角形與△ABC相似,滿足這樣條件的直線共有( )
A.1條
B.2條
C.3條
D.4條
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com