【題目】現(xiàn)有甲、乙、丙等多家食品公司在某市開設(shè)蛋糕店,該市蛋糕店數(shù)量的扇形統(tǒng)計圖如圖所示,其中統(tǒng)計圖中沒有標注相應公司數(shù)量的百分比.已知乙公司經(jīng)營150家蛋糕店,請根據(jù)該統(tǒng)計圖回答下列問題:

(1)求甲公司經(jīng)營的蛋糕店數(shù)量和該市蛋糕店的總數(shù);

(2)甲公司為了擴大市場占有率,決定在該市增設(shè)蛋糕店數(shù)量達到全市的20%,求甲公司需要增設(shè)的蛋糕店數(shù)量.

【答案】(1)甲蛋糕店數(shù)量為100家,該市蛋糕店總數(shù)為600家;(2)甲公司需要增設(shè)25家蛋糕店.

【解析】

分析: (1)用乙公司經(jīng)營的蛋糕店的數(shù)量乘以其所占的百分比即可得出該市蛋糕店的總數(shù);用該市蛋糕店的總數(shù)乘以甲蛋糕店所占的百分比即可得出甲公司經(jīng)營的蛋糕店數(shù)量;

(2)設(shè)甲公司增設(shè)x家蛋糕店,則全市共有蛋糕店(x+600)家,甲公司經(jīng)營的蛋糕店為20%(600+x)家或(100+x)家,從而列出方程,求解即可.

詳解:

(1)解 :150× =600(家)

600× =100(家)

答:甲蛋糕店數(shù)量為100家,該市蛋糕店總數(shù)為600家.

(2)解 :設(shè)甲公司增設(shè)x家蛋糕店,

由題意得20%(600+x)=100+x

解得x=25(家)

答:甲公司需要增設(shè)25家蛋糕店.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】下列變形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=兩邊同除以,得x=1;

③由方程6x﹣4=x+4移項,得7x=0;

④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).

錯誤變形的個數(shù)是( 。﹤

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在解決數(shù)學問題的過程中,我們常用到分類討論的數(shù)學思想,下面是運用分類討論的數(shù)學思想解決問題的過程,請仔細閱讀,并解答題目后提出的(探究).

(提出問題)兩個有理數(shù)a、b滿足a、b同號,求的值.

(解決問題)解:由a、b同號,可知a、b有兩種可能:①當a,b都正數(shù);②當a,b都是負數(shù).①若a、b都是正數(shù),即a>0,b>0,有|a|=a,|b|=b,則==1+1=2;②若a、b都是負數(shù),即a<0,b<0,有|a|=﹣a,|b|=﹣b,則==(﹣1)+(﹣1)=﹣2,所以的值為2或﹣2.

(探究)請根據(jù)上面的解題思路解答下面的問題:

(1)兩個有理數(shù)a、b滿足a、b異號,求的值;

(2)已知|a|=3,|b|=7,且a<b,求a+b的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的正方形網(wǎng)格中,ABC的頂點均在格點上,請在所給直角坐標系中按要求畫圖和解答下列問題:

(1)將ABC沿x軸翻折后再沿x軸向右平移1個單位,在圖中畫出平移后的A1B1C1

(2)作ABC關(guān)于坐標原點成中心對稱的A2B2C2

(3)求B1的坐標 C2的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在數(shù)軸上A點表示數(shù)a,B點示數(shù)bC點表示數(shù)c,b是最小的正整數(shù),且a,b滿足 +(c-7)2=0.

(1) a= ,b= ,c=

(2) 若將數(shù)軸折疊,使得A點與C點重合,則點B與數(shù) 表示的點重合.

(3) A,B,C開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和4個單位長度的速度向右運動,假設(shè)t秒鐘過后,若點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC.則AB= ,AC= BC= .(用含t的代數(shù)式表示)

(4) 請問:3BC-2AB的值是否隨著時間t的變化而改變? 若變化,請說明理由;若不變,請求其值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在長方形ABCDAB=12 cm,BC=6 cm.P沿AB邊從點A開始向點B2 cm/s的速度移動;點Q沿DA邊從點D開始向點A1 cm/s的速度移動.

設(shè)點P,Q同時出發(fā)t(s)表示移動的時間.

(發(fā)現(xiàn)) DQ________cm,AP________cm.(用含t的代數(shù)式表示)

(拓展)(1)如圖①,t________s,線段AQ與線段AP相等?

(2)如圖②,PQ分別到達BA后繼續(xù)運動,P到達點C后都停止運動.

t為何值時,AQCP?

(探究)若點P,Q分別到達點B,A后繼續(xù)沿著ABCDA的方向運動當點P與點Q第一次相遇時請直接寫出相遇點的位置.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB=AC,點D在邊BC所在的直線上,過點D作DFAC交直線AB于點F,DEAB交直線AC于點E.

(1)當點D在邊BC上時,如圖,求證:DE+DF=AC.

(2)當點D在邊BC的延長線上時,如圖;當點D在邊BC的反向延長線上時,如圖,請分別寫出圖、圖中DE,DF,AC之間的數(shù)量關(guān)系,不需要證明.

(3)若AC=6,DE=4,則DF=   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)政府大力提倡綠色、低碳出行,越來越多的人選擇用電動車出行,某商場銷售的一款電動車每臺的標價是3270元,在一次促銷活動中,按標價的八折銷售,仍可盈利9%.

(1)求這款電動車每臺的進價?(利潤率==).

(2)在這次促銷活動中,商場銷售了這款電動車100臺,問盈利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上位于點A左側(cè)一點,且AB=20,

(1)寫出數(shù)軸上點B表示的數(shù)   ;

(2)|5﹣3|表示53之差的絕對值,實際上也可理解為53兩數(shù)在數(shù)軸上所對的兩點之間的距離.如|x﹣3|的幾何意義是數(shù)軸上表示有理數(shù)x的點與表示有理數(shù)3的點之間的距離.試探索:

①:若|x﹣8|=2,則x=   

:|x+12|+|x﹣8|的最小值為   

(3)動點PO點出發(fā),以每秒5個單位長度的速度沿數(shù)軸向右勻速運動,設(shè)運動時間為t(t>0)秒.求當t為多少秒時?A,P兩點之間的距離為2;

(4)動點P,Q分別從O,B兩點,同時出發(fā),點P以每秒5個單位長度沿數(shù)軸向右勻速運動,Q點以P點速度的兩倍,沿數(shù)軸向右勻速運動,設(shè)運動時間為t(t>0)秒.問當t為多少秒時?P,Q之間的距離為4.

查看答案和解析>>

同步練習冊答案