【題目】如圖,點E(0,3),O(0,0),C(4,0)在⊙A上,BE是⊙A上的一條弦.則sin∠OBE=

【答案】
【解析】解:連接EC,由∠EOC=90°得到BC為圓A的直徑,

∴EC過點A,

又OE=3,OC=4,根據(jù)勾股定理得:EC=5,

∵∠OBE和∠OCE為 所對的圓周角,

∴∠OBE=∠OCE,

則sin∠OBE=sin∠OCE= =

故答案為:

連接EC,由90°的圓周角所對的弦為直徑,根據(jù)∠EOC=90°得到EC為圓A的直徑,所以點A在EC上且為EC中點,在直角三角形EOC中,由OE和OC的長,利用勾股定理求出EC的長,根據(jù)同弧所對的圓周角都相等得到∠EBO與∠ECO相等,而∠ECO在直角三角形EOC中,根據(jù)余弦函數(shù)定義即可求出sin∠ECO的值,進而得到sin∠EBO.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點PAOB的邊OB上的一點,過點POB的垂線,交OA于點C;

(1) 過點COB的平行線CD

(2) 過點POA的垂線,垂足為H;

(3) 線段PH的長度是點P 的距離,線段 的長度是點C到直線OB的距離.線段PC、PH、OC這三條線段大小關(guān)系是 (用“<”號連接).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,它表示甲乙兩人從同一個地點出發(fā)后的情況.到十點時,甲大約走了13千米.根據(jù)圖象回答:

1)甲是幾點鐘出發(fā)?

2)乙是幾點鐘出發(fā),到十點時,他大約走了多少千米?

3)到十點為止,哪個人的速度快?

4)兩人最終在幾點鐘相遇?

5)你能將圖象中得到信息,編個故事嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CDAB,EFAB,垂足分別為D、F,∠1=∠2,

(1)試判斷DGBC的位置關(guān)系,并說明理由.

(2)若∠A=70°,∠BCG=40°,求∠AGD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文具店今年1月份購進一批筆記本,共2290本,每本進價為10元,該文具店決定從2月份開始進行銷售,若每本售價為11元,則可全部售出;且每本售價每增長0.5元,銷量就減少15本.
(1)若該種筆記本在2月份的銷售量不低于2200本,則2月份售價應不高于多少元?
(2)由于生產(chǎn)商提高造紙工藝,該筆記本的進價提高了10%,文具店為了增加筆記本的銷量,進行了銷售調(diào)整,售價比中2月份在(1)的條件下的最高售價減少了 m%,結(jié)果3月份的銷量比2月份在(1)的條件下的最低銷量增加了m%,3月份的銷售利潤達到6600元,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣ x2 x+ 與x軸交于A,B兩點(A點在B點的左側(cè)),與y軸交于點C,已知點D(0,﹣ ).

(1)求直線AC的解析式;
(2)如圖1,P為直線AC上方拋物線上的一動點,當△PBD面積最大時,過P作PQ⊥x軸于點Q,M為拋物線對稱軸上的一動點,過M作y軸的垂線,垂足為點N,連接PM,NQ,求PM+MN+NQ的最小值;
(3)在(2)問的條件下,將得到的△PBQ沿PB翻折得到△PBQ′,將△BPQ′沿直線BD平移,記平移中的△PBQ′為△P′B′Q″,在平移過程中,設直線P′B′與x軸交于點E.則是否存在這樣的點E,使得△B′EQ″為等腰三角形?若存在,求此時OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級兩個班,各選派10名學生參加學校舉行的“數(shù)學奧林匹克”大賽預賽,各參賽選手的成績?nèi)缦拢?/span>
九(1)班:88,91,92,93,93,93,94,98,98,100
九(2)班:89,93,93,93,95,96,96,98,98,99
通過整理,得到數(shù)據(jù)分析表如下:

班級

最高分

平均分

中位數(shù)

眾數(shù)

方差

九(1)班

100

94

b

93

12

九(2)班

99

a

95.5

93

8.4


(1)直接寫出表中a、b的值:a= , b=;
(2)若從兩班的參賽選手中選四名同學參加決賽,其中兩個班的第一名直接進入決賽,另外兩個名額在四個“98分”的學生中任選二個,求另外兩個決賽名額落在不同班級的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形ABCD中,AC為對角線,延長CD至點E使CE=CA,連接AE。F為AB上一點,且BF=DE,連接FC.

(1)若DE=1,CF=2,求CD的長。

(2)如圖2,點G為線段AE的中點,連接BG交AC于H,若∠BHC+∠ABG=600,求證:AF+CE=AC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一塊直角三角形的綠地,量得直角邊BC6cm,AC8cm,現(xiàn)在要將原綠地擴充后成等腰三角形,且擴充的部分是以AC為直角邊的直角三角形,求擴充后的等腰三角形綠地的周長.

查看答案和解析>>

同步練習冊答案