【題目】某商場經(jīng)營某種品牌的玩具,購進時的單價是30元,根據(jù)市場調查:在一段時間內,銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.
(1)不妨設該種品牌玩具的銷售單價為x元(x>40),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結果填寫在表格中:
(2)在(1)問條件下,若商場獲得了10000元銷售利潤,求該玩具銷售單價x應定為多少元.
(3)在(1)問條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于44元,且商場要完成不少于540件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?
【答案】(1)1000﹣10x,﹣10x2+1300x﹣30000;(2)50元或80元;(3)8640元.
【解析】
試題分析:(1)由銷售單價每漲1元,就會少售出10件玩具得y=600﹣(x﹣40)×10=1000﹣10x,利潤=(x﹣30)=﹣10x2+1300x﹣30000;
(2)令﹣10x2+1300x﹣30000=10000,求出x的值即可;
(3)首先求出x的取值范圍,然后把w=﹣10x2+1300x﹣30000轉化成y=﹣10(x﹣65)2+12250,結合x的取值范圍,求出最大利潤.
試題解析:(1)
(2)﹣10x2+1300x﹣30000=10000
解之得:x1=50,x2=80.
答:玩具銷售單價為50元或80元時,可獲得10000元銷售利潤.
(3)根據(jù)題意得:
解之得:44≤x≤46,w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,∵a=﹣10<0,對稱軸是直線x=65,∴當44≤x≤46時,w隨x增大而增大,∴當x=46時,W最大值=8640(元).
答:商場銷售該品牌玩具獲得的最大利潤為8640元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形紙片ABCD置于直角坐標系中,點A(4,0),點B(0,3),點D(異于點B、C)為邊BC上動點,過點O、D折疊紙片,得點B′和折痕OD.過點D再次折疊紙片,使點C落在直線DB′上,得點C′和折痕DE,連接OE,設BD=t.
(1)當t=1時,求點E的坐標;
(2)設S四邊形OECB=s,用含t的式子表示s(要求寫出t的取值范圍);
(3)當OE取最小值時,求點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將線段AB繞點O順時針旋轉90°得到線段A′B′,那么A(﹣2,5)的對應點A′的坐標是( )
A.(2,5) B.(5,2) C.(2,﹣5) D.(5,﹣2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀與應用:閱讀1:a、b為實數(shù),且a>0,b>0,因為,所以從而(當a=b時取等號).
閱讀2:若函數(shù);(m>0,x>0,m為常數(shù)),由閱讀1結論可知:,所以當,即時,函數(shù)的最小值為.
閱讀理解上述內容,解答下列問題:
問題1:已知一個矩形的面積為4,其中一邊長為x,則另一邊長為,周長為2(),求當x= 時,周長的最小值為 ;
問題2:已知函數(shù)()與函數(shù)(),
當x= 時,的最小值為 ;
問題3:某民辦學校每天的支出總費用包含以下三個部分:一是教職工工資4900元;二是學生生活費成本每人10元;三是其他費用.其中,其他費用與學生人數(shù)的平方成正比,比例系數(shù)為0.01.當學校學生人數(shù)為多少時,該校每天生均投入最低?最低費用是多少元?(生均投入=支出總費用÷學生人數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,ABCD中,E、F分別是邊AB、CD的中點.
(1)求證:四邊形EBFD是平行四邊形;
(2)若AD=AE=2,∠A=60°,求四邊形EBFD的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲經(jīng)銷商庫存有1200套A品牌服裝,每套進價400元,每套售價500元,一年內可賣完,現(xiàn)市場流行B品牌服裝,每套進價300元,每套售價600元,但一年內只允許經(jīng)銷商一次性訂購B品牌服裝,一年內B品牌服裝銷售無積壓,因甲經(jīng)銷商無流動資金可用,只有低價轉讓A品牌服裝,用轉讓來的資金購進B品牌服裝,并銷售,經(jīng)與乙經(jīng)銷商協(xié)商,甲、乙雙方達成轉讓協(xié)議,轉讓價格y(元/套)與轉讓數(shù)量x(套)之間的函數(shù)關系式為(),若甲經(jīng)銷商轉讓x套A品牌服裝,一年內所獲總利潤為W(元).
(1)求轉讓后剩余的A品牌服裝的銷售款(元)與x(套)之間的函數(shù)關系式;
(2)求B品牌服裝的銷售款(元)與x(套)之間的函數(shù)關系式;
(3)求W(元)與x(套)之間的函數(shù)關系式,并求W的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知兩點E(x1,y1),F(xiàn)(x2,y2),如果x1+x2=2x1,y1+y2=0,那么E,F(xiàn)兩點關于_______對稱.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com