【題目】如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),經(jīng)過(guò)C作CD⊥AB于點(diǎn)D,CF是⊙O的切線,過(guò)點(diǎn)A作AE⊥CF于E,連接AC.
(1)求證:AE=AD.
(2)若AE=3,CD=4,求AB的長(zhǎng).
【答案】(1)證明見(jiàn)解析(2)
【解析】
(1)連接OC,根據(jù)垂直定義和切線性質(zhì)定理證出△CAE≌△CAD(AAS),得AE=AD;(2)連接CB,由(1)得AD=AE=3,根據(jù)勾股定理得:AC=5,由cos∠EAC=,cos∠CAB==,∠EAC=∠CAB,得=.
(1)證明:連接OC,如圖所示,
∵CD⊥AB,AE⊥CF,
∴∠AEC=∠ADC=90°,
∵CF是圓O的切線,
∴CO⊥CF,即∠ECO=90°,
∴AE∥OC,
∴∠EAC=∠ACO,
∵OA=OC,
∴∠CAO=∠ACO,
∴∠EAC=∠CAO,
在△CAE和△CAD中,
,
∴△CAE≌△CAD(AAS),
∴AE=AD;
(2)解:連接CB,如圖所示,
∵△CAE≌△CAD,AE=3,
∴AD=AE=3,
∴在Rt△ACD中,AD=3,CD=4,
根據(jù)勾股定理得:AC=5,
在Rt△AEC中,cos∠EAC==,
∵AB為直徑,
∴∠ACB=90°,
∴cos∠CAB==,
∵∠EAC=∠CAB,
∴=,即AB=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面的網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位.小正方形的頂點(diǎn)叫做格點(diǎn),以О點(diǎn)為原點(diǎn),以過(guò)О點(diǎn)的水平直線MN為x軸建立平面直角坐標(biāo)系.
(1)與格點(diǎn)是關(guān)于y軸對(duì)稱,畫(huà)出;
(2)格點(diǎn)Р在第二象限內(nèi),且為等腰直角(注:P不在的邊上),畫(huà)出,并直接寫(xiě)出Р點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一拋物線形大門(mén),其地面寬度.一同學(xué)站在門(mén)內(nèi),在離門(mén)腳點(diǎn)遠(yuǎn)的處,垂直地面立
起一根長(zhǎng)的木桿,其頂端恰好頂在拋物線形門(mén)上處.根據(jù)這些條件,請(qǐng)你求出該大門(mén)的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知反比例函數(shù)的圖像與一正比例函數(shù)的圖像相交于點(diǎn),點(diǎn)的坐標(biāo)是.
(1)求正比例函數(shù)的解析式;
(2)若正比例函數(shù)的圖像與反比例函數(shù)的圖像在第一象限內(nèi)交于點(diǎn),過(guò)點(diǎn)作軸的垂線,為垂足,且交直線于點(diǎn),過(guò)點(diǎn)作軸的垂線,為垂足,求梯形的面積;
(3)連結(jié),求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】菱形ABCD的邊長(zhǎng)是4,∠ABC=120°,點(diǎn)M、N分別在邊AD、AB上,且MN⊥AC,垂足為P,把△AMN沿MN折疊得到△AˊMN,若△AˊDC恰為等腰三角形,則AP的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等腰△ABC中,AB=AC,∠ABC的平分線交AC于D,過(guò)點(diǎn)A作AE // BC交BD的延長(zhǎng)線于點(diǎn)E,∠CAE的平分線交BE于點(diǎn)F.
(1)①如圖,若∠BAC=36o,求證:BD=EF;
②如圖,若∠BAC=60o,求的值;
(2)如圖,若∠BAC=60o,過(guò)點(diǎn)D作DG// BC,交AB于點(diǎn)G,點(diǎn)N為BC中點(diǎn),點(diǎn)P, M分別是GD, BG上的動(dòng)點(diǎn),且∠PNM=60°. 求證:AP=PN=MN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩個(gè)工程隊(duì)分別同時(shí)開(kāi)挖兩段河渠,所挖河渠的長(zhǎng)度y(m)與挖掘時(shí)間x(h)之間的關(guān)系如圖所示.根據(jù)圖象所提供的信息有:①甲隊(duì)挖掘30m時(shí),用了3h;②挖掘6h時(shí)甲隊(duì)比乙隊(duì)多挖了10m;③乙隊(duì)的挖掘速度總是小于甲隊(duì);④開(kāi)挖后甲、乙兩隊(duì)所挖河渠長(zhǎng)度相等時(shí),x=4.其中一定正確的有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=kx+2的圖象經(jīng)過(guò)點(diǎn)A,且y隨x的增大而減小.則A點(diǎn)的坐標(biāo)可以是( 。
A.(2,5)B.(﹣1,1)C.(3,0)D.(,4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)一品牌服裝,銷(xiāo)售一件可獲利元,為在十一期間增加盈利,進(jìn)行促銷(xiāo)活動(dòng),決定采取降價(jià)措施.根據(jù)以往銷(xiāo)售經(jīng)驗(yàn)及市場(chǎng)調(diào)查發(fā)現(xiàn),每件服裝降價(jià)(元)與每天的銷(xiāo)售量(件)之間的關(guān)系如下表
(元) | … | |||||
(件) | … |
請(qǐng)你按照上表,求與之間的函數(shù)解析式.
為保證每天能盈利元,又能吸引顧客,每件服裝應(yīng)降價(jià)多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com