【題目】已知:如圖,一次函數(shù)y=﹣2x+1與反比例函數(shù)y= 的圖象有兩個交點A(﹣1,m)和B,過點A作AE⊥x軸,垂足為點E;過點B作BD⊥y軸,垂足為點D,且點D的坐標為(0,﹣2),連接DE.
(1)求k的值;
(2)求四邊形AEDB的面積.
【答案】
(1)解:如圖所示,延長AE,BD交于點C,則∠ACB=90°,
∵一次函數(shù)y=﹣2x+1的圖象經(jīng)過點A(﹣1,m),
∴m=2+1=3,
∴A(﹣1,3),
∵反比例函數(shù)y= 的圖象經(jīng)過A(﹣1,3),
∴k=﹣1×3=﹣3;
(2)解:∵BD⊥y軸,垂足為點D,且點D的坐標為(0,﹣2),
∴令y=﹣2,則﹣2=﹣2x+1,
∴x= ,即B( ,﹣2),
∴C(﹣1,﹣2),
∴AC=3﹣(﹣2)=5,BC= ﹣(﹣1)= ,
∴四邊形AEDB的面積=△ABC的面積﹣△CDE的面積
= AC×BC﹣ CE×CD
= ×5× ﹣ ×2×1
= .
【解析】(1)根據(jù)一次函數(shù)y=﹣2x+1的圖象經(jīng)過點A(﹣1,m),即可得到點A的坐標,再根據(jù)反比例函數(shù)y= 的圖象經(jīng)過A(﹣1,3),即可得到k的值;(2)先求得AC=3﹣(﹣2)=5,BC= ﹣(﹣1)= ,再根據(jù)四邊形AEDB的面積=△ABC的面積﹣△CDE的面積進行計算即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動課上,老師和學(xué)生一起去測量學(xué)校升旗臺上旗桿AB的高度.如圖,老師測得升旗臺前斜坡FC的坡比為iFC=1:10(即EF:CE=1:10),學(xué)生小明站在離升旗臺水平距離為35m(即CE=35m)處的C點,測得旗桿頂端B的仰角為α.已知tanα= ,升旗臺高AF=1m,小明身高CD=1.6m,請幫小明計算出旗桿AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一個直角三角形紙片ABO放置在平面直角坐標系中,點 ,點B(0,1),點O(0,0).P是邊AB上的一點(點P不與點A,B重合),沿著OP折疊該紙片,得點A的對應(yīng)點A'.
(1)如圖①,當點A'在第一象限,且滿足A'B⊥OB時,求點A'的坐標;
(2)如圖②,當P為AB中點時,求A'B的長;
(3)當∠BPA'=30°時,求點P的坐標(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校園文學(xué)社為了解本校學(xué)生對本社一種報紙四個版面的喜歡情況,隨機抽查部分學(xué)生做了一次問卷調(diào)查,要求學(xué)生選出自己最喜歡的一個版面,將調(diào)查數(shù)據(jù)進行了整理、繪制成部分統(tǒng)計圖如下:
請根據(jù)圖中信息,解答下列問題:
(1)該調(diào)查的樣本容量為 , a=%,“第一版”對應(yīng)扇形的圓心角為°;
(2)請你補全條形統(tǒng)計圖;
(3)若該校有1000名學(xué)生,請你估計全校學(xué)生中最喜歡“第三版”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.將△AOB繞頂點O,按順時針方向旋轉(zhuǎn)到△A1OB1處,此時線段OB1與AB的交點D恰好為AB的中點,則線段B1D=cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,點D、E分別是邊AB、AC的中點,延長DE到F,使得EF=DE,那么四邊形ADCF是( )
A.等腰梯形
B.直角梯形
C.矩形
D.菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=5,BC=6,點O是邊BC上的動點,以點O為圓心,OB為半徑作圓O,交AB邊于點D,過點D作∠ODP=∠B,交邊AC于點P,交圓O與點E.設(shè)OB=x.
(1)當點P與點C重合時,求PD的長;
(2)設(shè)AP﹣EP=y,求y關(guān)于x的解析式及定義域;
(3)聯(lián)結(jié)OP,當OP⊥OD時,試判斷以點P為圓心,PC為半徑的圓P與圓O的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y= x2+bx+c與x軸交于點A(﹣2,0),交y軸于點B(0, ).直線y=kx 過點A與y軸交于點C,與拋物線的另一個交點是D.
(1)求拋物線y= x2+bx+c與直線y=kx 的解析式;
(2)設(shè)點P是直線AD下方的拋物線上一動點(不與點A、D重合),過點P作y軸的平行線,交直線AD于點M,作DE⊥y軸于點E.探究:是否存在這樣的點P,使四邊形PMEC是平行四邊形?若存在請求出點P的坐標;若不存在,請說明理由;
(3)在(2)的條件下,作PN⊥AD于點N,設(shè)△PMN的周長為m,點P的橫坐標為x,求m與x的函數(shù)關(guān)系式,并求出m的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABO縮小后變?yōu)椤鰽′B′O,其中A、B的對應(yīng)點分別為A′,B′,A′,B′均在圖中格點上,若線段AB上有一點P(m,n),則點P在A′B′上的對應(yīng)點P′的坐標為( )
A.( ,n)??
B.(m,n)??
C.( , )??
D.(m, )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com