【題目】如圖1,已知五邊形OABCD的頂點(diǎn)O在坐標(biāo)原點(diǎn),點(diǎn)A在y軸上,點(diǎn)D在x軸上,AB∥x軸,CD∥y軸,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1單位的速度,沿五邊形OABCD的邊順時(shí)針運(yùn)動(dòng)一周,順次連結(jié)P,O,A三點(diǎn)所圍成圖形的面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,S與t之間的函數(shù)關(guān)系如圖2中折線OEFGHI所示.
(1)求證:AB=2;
(2)求五邊形OABCD的面積.
(3)求直線BC的函數(shù)表達(dá)式;
(4)若直線OP把五邊形OABCD的面積分成1:3兩部分,求點(diǎn)P的坐標(biāo).
【答案】(1)詳見解析;(2)24;(3)y=﹣x+;(4)點(diǎn)P()或().
【解析】
(1)先判斷出OA=6,再利用三角形ABO的面積即可求出AB;
(2)先判斷出BC,CD,進(jìn)而求出B'D,再用面積的和即可得出結(jié)論;
(3)先確定出點(diǎn)B,C坐標(biāo),利用待定系數(shù)法即可得出結(jié)論;
(4)先判斷出點(diǎn)P必在線段BC上,進(jìn)而求出求出三角形ABM的面積,再分兩種情況利用面積建立方程求解即可得出結(jié)論.
(1)連接OB,由圖1,圖2知,OA=6,
當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)B時(shí),S△AOP=S△AOB=×6×AB=6,
∴AB=2,
(2)由(1)知AB=2,
∴OA+AB=6+2=8,
∴圖2中的a是8秒,
由圖1,圖2知,當(dāng)點(diǎn)P從B運(yùn)動(dòng)到點(diǎn)C時(shí),用了13﹣8=5秒鐘,
∴BC=5,
點(diǎn)P從點(diǎn)C運(yùn)動(dòng)到點(diǎn)D時(shí),△AOP的面積不變,用了15﹣13=2秒,
∴CD=2,
過點(diǎn)B作BB'⊥OD于B',
∴四邊形OABB'是矩形,BB'=OA=6,OB'=AB=2,
過點(diǎn)C作CC'⊥BB'于B',
∴四邊形CC'B'D是矩形,B'C'=CD=2,DB'=CC'
∴BC'=BB'﹣B'C'=4
在Rt△BC'C中,根據(jù)勾股定理得,CC'==3,
∴DB'=3,
∴OD=OB'+DB'=2+2=5,
∴S五邊形OABCD的面積=S矩形AOBB'+S梯形CDB'B=2×6+(2+6)×3=24;
(3)由(2)知,BB'=6,OB'=2,
∴B(2,6),
由(2)知,CD=2,OD=5,
∴C(5,2),
設(shè)直線BC的解析式為y=kx+b',
∴,
∴,
∴直線BC的解析式為y=﹣x+;
(4)如圖3,
連接OB,OC,由圖2知,S△AOB=6,
由(2)知,CD=2,OD=5,
∴S△COD=5,
延長CB交y軸于M,
∴M(0,),
∴AM=,
∴S△AMB=AM×AB=
由(2)知,S五邊形OABCD的面積=24,
∴點(diǎn)P必在線段BC上,
設(shè)P(m,﹣ m+)(0<m<5),
∵直線OP把五邊形OABCD的面積分成1:3兩部分,
∴S四邊形OABP=S五邊形OABCD的面積=8或S四邊形OABP=S五邊形OABCD的面積=16,
當(dāng)S四邊形OABP=8時(shí),∴S△OPM=S四邊形OABP+S△AMB==××m,
∴m=,
∴P(,)
當(dāng)S四邊形OABP'=16時(shí),S△OP'M=S四邊形OABP'+S△AMB==××m,
∴m=,
∴P'(,),
即:滿足題意的點(diǎn)P(,)或(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C、D、E三點(diǎn)在同一直線上,連接BD.
(1)求證:△BAD≌△CAE;
(2)試猜想BD、CE有何特殊位置關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,霧霾天氣給人們的生活帶來很大影響,空氣質(zhì)量問題倍受人們關(guān)注,某學(xué)校計(jì)劃在教室內(nèi)安裝空氣凈化裝置,需購進(jìn)A、B兩種設(shè)備,已知:購買1臺(tái)A種設(shè)備和2臺(tái)B種設(shè)備需要3.5萬元;購買2臺(tái)A種設(shè)備和1臺(tái)B種設(shè)備需要2.5萬元.
(1)求每臺(tái)A種、B種設(shè)備各多少萬元?
(2)根據(jù)學(xué)校實(shí)際,需購進(jìn)A種和B種設(shè)備共30臺(tái),總費(fèi)用不超過30萬元,請(qǐng)你通過計(jì)算,求至少購買A種設(shè)備多少臺(tái)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)正整數(shù)能表示成兩個(gè)連續(xù)偶數(shù)的平方差,那么這個(gè)正整數(shù)為“神秘?cái)?shù)”.
如:
因此,4,12,20這三個(gè)數(shù)都是神秘?cái)?shù).
(1)28和2012這兩個(gè)數(shù)是不是神秘?cái)?shù)?為什么?
(2)設(shè)兩個(gè)連續(xù)偶數(shù)為和(其中為非負(fù)整數(shù)),由這兩個(gè)連續(xù)偶數(shù)構(gòu)造的神秘?cái)?shù)是4的倍數(shù),請(qǐng)說明理由.
(3)兩個(gè)連續(xù)奇數(shù)的平方差(取正數(shù))是不是神秘?cái)?shù)?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個(gè)交點(diǎn)為A(3,0),與y軸的交點(diǎn)為B(0,3),其頂點(diǎn)為C,對(duì)稱軸為x=1.
(1)求拋物線的解析式;
(2)已知點(diǎn)M為y軸上的一個(gè)動(dòng)點(diǎn),當(dāng)△ABM為等腰三角形時(shí),求點(diǎn)M的坐標(biāo);
(3)將△AOB沿x軸向右平移m個(gè)單位長度(0<m<3)得到另一個(gè)三角形,將所得的三角形與△ABC重疊部分的面積記為S,用m的代數(shù)式表示S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中考體育測試前,某區(qū)教育局為了了解選報(bào)引體向上的初三男生的成績情況,隨機(jī)抽測了本區(qū)部分選報(bào)引體向上項(xiàng)目的初三男生的成績,并將測試得到的成績繪成了下面兩幅不完整的統(tǒng)計(jì)圖:
請(qǐng)你根據(jù)圖中的信息,解答下列問題:
()寫出扇形圖中__________,并補(bǔ)全條形圖.
()在這次抽測中,測試成績的眾數(shù)和中位數(shù)分別是__________個(gè)、__________個(gè).
()該區(qū)體育中考選報(bào)引體向上的男生共有人,如果體育中考引體向上達(dá)個(gè)以上(含個(gè))得滿分,請(qǐng)你估計(jì)該區(qū)體育中考中選報(bào)引體向上的男生能獲得滿分的有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市中小學(xué)全面開展“陽光體育”活動(dòng),某校在大課間中開設(shè)了A:體操,B:跑操,C:舞蹈,D:健美操四項(xiàng)活動(dòng),為了解學(xué)生最喜歡哪一項(xiàng)活動(dòng),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問題:
(1)這次被調(diào)查的學(xué)生共有人.
(2)請(qǐng)將統(tǒng)計(jì)圖2補(bǔ)充完整.
(3)統(tǒng)計(jì)圖1中B項(xiàng)目對(duì)應(yīng)的扇形的圓心角是度.
(4)已知該校共有學(xué)生3600人,請(qǐng)根據(jù)調(diào)查結(jié)果估計(jì)該校喜歡健美操的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)與一次函數(shù)的
圖像交于點(diǎn)A.
(1)求點(diǎn)A的坐標(biāo);
(2)在y軸上確定點(diǎn)M,使得△AOM是等腰三角形,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);
(3)如圖,設(shè)x軸上一點(diǎn)P(a,0),過點(diǎn)P作x軸的垂線(垂線位于點(diǎn)A的右側(cè)),分別交和的圖像于點(diǎn)B、C,連接OC,若BC=OA,求△ABC的面積及點(diǎn)B、點(diǎn)C的坐標(biāo);
(4)在(3)的條件下,設(shè)直線交x軸于點(diǎn)D,在直線BC上確定點(diǎn)E,使得△ADE的周長最小,請(qǐng)直接寫出點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形,,過點(diǎn),垂足為,并延長,使,聯(lián)結(jié).
(1)求證:四邊形是平行四邊形。
(2)聯(lián)結(jié),如果
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com