(2008•岳陽)如圖,四邊形ABCD是一正方形,已知A(1,2),B(5,2)
(1)求點(diǎn)C,D的坐標(biāo);
(2)若一次函數(shù)y=kx-2(k≠0)的圖象過C點(diǎn),求k的值.
(3)若y=kx-2的直線與x軸、y軸分別交于M,N兩點(diǎn),且△OMN的面積等于2,求k的值.

【答案】分析:根據(jù)正方形的定義得到正方形的邊長是4,C,D的坐標(biāo)容易求出;
把C點(diǎn)坐標(biāo)代入一次函數(shù)y=kx-2(k≠0)的解析式,就可以求出k的值;
根據(jù)△OMN的面積等于2,就可以求出k的值.
解答:解:(1)∵ABCD為正方形,又A(1,2),B(5,2)
則AB=4,∴C(5,6),D(1,6)(2分)

(2)∵y=kx-2經(jīng)過C點(diǎn),∴6=5k-2,∴k==1.6 (4分)

(3)y=kx-2與x軸的交點(diǎn)為M
y=0時(shí),kx-2=0,x=,M(,0),N(0,-2)
又S△OMA=|OM|•|ON|=×|-2|•||=2
∴|K|=1,k=±1
故k=±1時(shí),△OMN的面積為2個(gè)單位(少一個(gè)k值扣1分)(6分).
點(diǎn)評:本題結(jié)合坐標(biāo)考查了函數(shù)的性質(zhì),注意結(jié)合圖形是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《四邊形》(06)(解析版) 題型:解答題

(2008•岳陽)如圖,四邊形ABCD是一正方形,已知A(1,2),B(5,2)
(1)求點(diǎn)C,D的坐標(biāo);
(2)若一次函數(shù)y=kx-2(k≠0)的圖象過C點(diǎn),求k的值.
(3)若y=kx-2的直線與x軸、y軸分別交于M,N兩點(diǎn),且△OMN的面積等于2,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2008•岳陽)如圖,點(diǎn)E(-4,0),以點(diǎn)E為圓心,2為半徑的圓與x軸交于A、B兩點(diǎn),拋物線y=x2+bx+c過點(diǎn)A和點(diǎn)B,與y軸交于C點(diǎn).
(1)求拋物線的解析式;
(2)求出點(diǎn)C的坐標(biāo),并畫出拋物線的大致圖象;
(3)點(diǎn)Q(m,)(m<0)在拋物線y=x2+bx+c的圖象上,點(diǎn)P為此拋物線對稱軸上的一個(gè)動點(diǎn),求PQ+PB的最小值;
(4)CF是圓E的切線,點(diǎn)F是切點(diǎn),在拋物線上是否存在一點(diǎn)M,使△COM的面積等于△COF的面積?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省內(nèi)江市二中中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2008•岳陽)如圖,點(diǎn)E(-4,0),以點(diǎn)E為圓心,2為半徑的圓與x軸交于A、B兩點(diǎn),拋物線y=x2+bx+c過點(diǎn)A和點(diǎn)B,與y軸交于C點(diǎn).
(1)求拋物線的解析式;
(2)求出點(diǎn)C的坐標(biāo),并畫出拋物線的大致圖象;
(3)點(diǎn)Q(m,)(m<0)在拋物線y=x2+bx+c的圖象上,點(diǎn)P為此拋物線對稱軸上的一個(gè)動點(diǎn),求PQ+PB的最小值;
(4)CF是圓E的切線,點(diǎn)F是切點(diǎn),在拋物線上是否存在一點(diǎn)M,使△COM的面積等于△COF的面積?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年湖南省岳陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•岳陽)如圖,點(diǎn)E(-4,0),以點(diǎn)E為圓心,2為半徑的圓與x軸交于A、B兩點(diǎn),拋物線y=x2+bx+c過點(diǎn)A和點(diǎn)B,與y軸交于C點(diǎn).
(1)求拋物線的解析式;
(2)求出點(diǎn)C的坐標(biāo),并畫出拋物線的大致圖象;
(3)點(diǎn)Q(m,)(m<0)在拋物線y=x2+bx+c的圖象上,點(diǎn)P為此拋物線對稱軸上的一個(gè)動點(diǎn),求PQ+PB的最小值;
(4)CF是圓E的切線,點(diǎn)F是切點(diǎn),在拋物線上是否存在一點(diǎn)M,使△COM的面積等于△COF的面積?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案