【題目】已知直線PD垂直平分⊙O的半徑OA于點(diǎn)BPD交⊙O于點(diǎn)C、D,PE是⊙O的切線,E為切點(diǎn),連接AE,交CD于點(diǎn)F

1)若⊙O的半徑為8,求CD的長(zhǎng);

2)若PF=13,求PE的長(zhǎng);

3)在(2)的條件下,sinA,求EF的長(zhǎng).

【答案】1;(213;(310

【解析】

1)首先連接OD,由直線PD垂直平分⊙O的半徑OA于點(diǎn)B,⊙O的半徑為8,可求得OB的長(zhǎng),又由勾股定理,可求得BD的長(zhǎng),然后由垂徑定理,求得CD的長(zhǎng);

2)由PE是⊙O的切線,易證得∠PEF=90°-∠AEO,∠PFE=AFB=90°-∠A,繼而可證得∠PEF=PFE,根據(jù)等角對(duì)等邊的性質(zhì),可得PE=PF,求得PE的長(zhǎng);

3)首先過(guò)點(diǎn)PPGEF于點(diǎn)G,易得∠FPG=A,即可得FG=PFsinA=13×=5,又由等腰三角形的性質(zhì),求得答案.

解:(1)連接OD,

∵直線PD垂直平分⊙O的半徑OA于點(diǎn)B,⊙O的半徑為8,

OB=OA=4,BC=BD=CD,

∴在RtOBD中,BD=

CD=2BD=

2)∵PE是⊙O的切線,

∴∠PEO=90°,

∴∠PEF=90°-AEO,∠PFE=AFB=90°-A,

OE=OA

∴∠A=AEO,

∴∠PEF=PFE,

PE=PF=13;

3)過(guò)點(diǎn)PPGEF于點(diǎn)G

∴∠PGF=ABF=90°,

∵∠PFG=AFB,

∴∠FPG=A

FG=PFsinA=13×=5

PE=PF,

EF=2FG=10.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰 Rt△ABC 中,AC=BC= 2,點(diǎn) P 在以斜邊 AB 為直徑的半圓上,M 為 PC的中點(diǎn).當(dāng)點(diǎn) P 沿半圓從點(diǎn) A 運(yùn)動(dòng)至點(diǎn) B 時(shí),點(diǎn) M 運(yùn)動(dòng)的路徑長(zhǎng)是( )

A. 2 B. 2 C. π D. π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某青春黨支部在精準(zhǔn)扶貧活動(dòng)中,給結(jié)對(duì)幫扶的貧困家庭贈(zèng)送甲、乙兩種樹(shù)苗讓其栽種.已知乙種樹(shù)苗的價(jià)格比甲種樹(shù)苗貴10元,用480元購(gòu)買(mǎi)乙種樹(shù)苗的棵數(shù)恰好與用360元購(gòu)買(mǎi)甲種樹(shù)苗的棵數(shù)相同.

(1)求甲、乙兩種樹(shù)苗每棵的價(jià)格各是多少元?

(2)在實(shí)際幫扶中,他們決定再次購(gòu)買(mǎi)甲、乙兩種樹(shù)苗共50棵,此時(shí),甲種樹(shù)苗的售價(jià)比第一次購(gòu)買(mǎi)時(shí)降低了10%,乙種樹(shù)苗的售價(jià)不變,如果再次購(gòu)買(mǎi)兩種樹(shù)苗的總費(fèi)用不超過(guò)1500元,那么他們最多可購(gòu)買(mǎi)多少棵乙種樹(shù)苗?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+2經(jīng)過(guò)點(diǎn)A(1,0)B(4,0),交y軸于點(diǎn)C;

1)求拋物線的解析式(用一般式表示);

2)點(diǎn)Dy軸右側(cè)拋物線上一點(diǎn),是否存在點(diǎn)D使SABC=SABD?若存在,請(qǐng)求出點(diǎn)D坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

3)將直線BC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)45°,與拋物線交于另一點(diǎn)E,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)垃圾進(jìn)行分類(lèi)投放,能提高垃圾處理和再利用的效率,減少污染,保護(hù)環(huán)境.為了檢查垃圾分類(lèi)的落實(shí)情況,某居委會(huì)成立了甲、乙兩個(gè)檢查組,采取隨機(jī)抽查的方式分別對(duì)轄區(qū)內(nèi)的A,BC,D四個(gè)小區(qū)進(jìn)行檢查,并且每個(gè)小區(qū)不重復(fù)檢查.

1)甲組抽到A小區(qū)的概率是多少;

2)請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求甲組抽到A小區(qū),同時(shí)乙組抽到C小區(qū)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E是邊BC的中點(diǎn),連接AE、DE,分別交BD、AC于點(diǎn)PQ,過(guò)點(diǎn)PPFAECB的延長(zhǎng)線于F,下列結(jié)論:

AED+EAC+EDB90°,

APFP,

AEAO

若四邊形OPEQ的面積為4,則該正方形ABCD的面積為36,

CEEFEQDE

其中正確的結(jié)論有( 。

A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,DAB邊上的一點(diǎn),以AD為直徑的OBC于點(diǎn)E,交AC于點(diǎn)F,過(guò)點(diǎn)CCGABAB于點(diǎn)G,交AE于點(diǎn)H,過(guò)點(diǎn)E的弦EPAB于點(diǎn)QEP不是直徑),點(diǎn)Q為弦EP的中點(diǎn),連結(jié)BP,BP恰好為O的切線.

1)求證:BCO的切線.

2)求證:

3)若sinABCAC15,求四邊形CHQE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),直線交二次函數(shù)的圖像于點(diǎn),點(diǎn)在該二次函數(shù)的圖像上,設(shè)過(guò)點(diǎn)(其中)且平行于軸的直線交直線于點(diǎn),交直線于點(diǎn),以線段、為鄰邊作矩形

1)若點(diǎn)的橫坐標(biāo)為8

①用含的代數(shù)式表示的坐標(biāo);

②點(diǎn)能否落在該二次函數(shù)的圖像上?若能,求出的值;若不能,請(qǐng)說(shuō)明理由;

2)當(dāng)時(shí),若點(diǎn)恰好落在該二次函數(shù)的圖像上,請(qǐng)直接寫(xiě)出此時(shí)滿足條件的所有直線的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線L1(常數(shù)t>0)與軸的負(fù)半軸交于點(diǎn)G,頂點(diǎn)為Q,過(guò)QQM軸交軸于點(diǎn)M,交雙曲線L2于點(diǎn)P,且OG·MP=4

1)求值;

2)當(dāng)t=2時(shí),求PQ的長(zhǎng);

3)當(dāng)PQM的中點(diǎn)時(shí),求t的值;

4)拋物線L1與拋物線L2所圍成的區(qū)域(不含標(biāo)界)內(nèi)整點(diǎn)(點(diǎn)的橫、縱坐標(biāo)都是整數(shù))的個(gè)數(shù)有且只有1個(gè),直接寫(xiě)出t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案