【題目】某冷庫一天的冷凍食品進(jìn)出記錄如下表運進(jìn)用正數(shù)表示,運出用負(fù)數(shù)表示

進(jìn)出數(shù)量單位:

4

2

進(jìn)出次數(shù)

2

1

3

3

2

1)這天冷庫的冷凍食品比原來增加了還是減少了?請說明理由.

2)根據(jù)實際情況,現(xiàn)有兩種方案:

方案一:運進(jìn)每噸冷凍食品費用500,運出每噸冷凍食品費用800元.

方案二:不管運進(jìn)還是運出每噸冷凍食品費用都是600元.從節(jié)約運費的角度考慮,選用哪一種方案比較合適?

【答案】1)這天冷庫的冷凍食品比原來減少了,見解析;(2)選擇方案二較合適.

【解析】

根據(jù)表格中的數(shù)據(jù)列出算式,計算即可作出判斷;

表示出兩種方案中的費用,比較即可.

解:根據(jù)題意得:

答:這天冷庫的冷凍食品比原來減少了;

方案一:;

方案二:,

,

選擇方案二較合適.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠A90°,點PQ分別是AB、AC上的動點,且滿足BPAQ,DBC的中點,當(dāng)點P運動到___時,四邊形APDQ是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】類比探究:

1)如圖1,等邊△ABC內(nèi)有一點P,若AP8,BP15,CP17,求∠APB的大小;(提示:將△ABP繞頂點A旋轉(zhuǎn)到△ACP處)

2)如圖2,在△ABC中,∠CAB90°ABAC,E、FBC上的點,且∠EAF45°.求證:EF2BE2+FC2

3)如圖3,在△ABC中,∠C90°,∠ABC30°,點O為△ABC內(nèi)一點,連接AO、BO、CO,且∠AOC=∠COB=∠BOA120°,若AC1,求OA+OB+OC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“*”定義一種新運算:對于任意有理數(shù)ab,規(guī)定a*b=ab2+2ab+a.

如:1*3=1×32+2×1×3+1=16

(1)求2*(﹣2)的值;

(2)若2*x=m,(其中x為有理數(shù)),試比較m,n的大;

(3)若[]=a+4,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了解七年級學(xué)生的體育成績,從全年級學(xué)生中隨機抽取部分學(xué)生進(jìn)行“雙飛”跳繩測試,結(jié)果分為A,B,C,D四個等級,請跟進(jìn)兩幅統(tǒng)計圖中的信息回答下列問題:

(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?

(2)求測試結(jié)果為C等級的學(xué)生數(shù),并補全條形圖;

(3)若該學(xué)校七年級共有400名學(xué)生,請你估計該學(xué)校七年級學(xué)生中“雙飛”跳繩測試結(jié)果為D等級的學(xué)生有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于A、D兩點,與y軸交于點B,四邊形OBCD是矩形,點A的坐標(biāo)為1,0,點B的坐標(biāo)為0,4,已知點Em,0是線段DO上的動點,過點E作PEx軸交拋物線于點P,交BC于點G,交BD于點H

1求該拋物線的解析式;

2當(dāng)點P在直線BC上方時,請用含m的代數(shù)式表示PG的長度;

32的條件下,是否存在這樣的點P,使得以P、B、G為頂點的三角形與DEH相似?若存在,求出此時m的值;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出下面四個命題,其中真命題的個數(shù)有(

(1)平分弦的直徑垂直于這條弦,并且平分這條弦所對的。

(2)90°的圓周角所對的弦是直徑;

(3)在同圓或等圓中,圓心角的度數(shù)是圓周角的度數(shù)的兩倍;

(4)如下圖,順次連接圓的任意兩條直徑的端點,所得的四邊形一定是矩形.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(1)﹣15﹣(﹣8+(﹣11)﹣12

2)(﹣3×(﹣4)﹣15÷

3×36

4)﹣22+3×(﹣14﹣(﹣4×5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為直線AB上一點,∠DOC為直角,OE平分∠BOC,OF平分∠AOD,OG平分∠AOC,下列結(jié)論:BOE與∠DOF互為余角;②2AOE﹣∠BOD90°;EOD與∠COG互為補角;BOE﹣∠DOF45°;其中正確的是( 。

A.①②③④B.③④C.②③D.②③④

查看答案和解析>>

同步練習(xí)冊答案