坐標(biāo)平面上的點(diǎn)P(,-2),當(dāng)P向左平移個(gè)單位,再向上平移個(gè)單位后,點(diǎn)P的坐標(biāo)為________.

答案:
解析:

(0,-)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

類比學(xué)習(xí):一動(dòng)點(diǎn)沿著數(shù)軸向右平移3個(gè)單位,再向左平移2個(gè)單位,相當(dāng)于向右平移1個(gè)單位.用實(shí)數(shù)加法表示為3+(-2)=1.
若坐標(biāo)平面上的點(diǎn)作如下平移:沿x軸方向平移的數(shù)量為a(向右為正,向左為負(fù),平移|a|個(gè)單位),沿y軸方向平移的數(shù)量為b(向上為正,向下為負(fù),平移|b|個(gè)單位),則把有序數(shù)對(duì){a,b}叫做這一平移的“平移量”;“平移量”{a,b}與“平移量”{c,d}的加法運(yùn)算法則為{a,b}+{c,d}={a+c,b+d}.
解決問(wèn)題:
(1)計(jì)算:{3,1}+{1,2};{1,2}+{3,1};
(2)①動(dòng)點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),先按照“平移量”{3,1}平移到A,再按照“平移量”
{1,2}平移到B;若先把動(dòng)點(diǎn)P按照“平移量”{1,2}平移到C,再按照“平移量”
{3,1}平移,最后的位置還是點(diǎn)B嗎?在圖1中畫出四邊形OABC.
②證明四邊形OABC是平行四邊形.
(3)如圖2,一艘船從碼頭O出發(fā),先航行到湖心島碼頭P(2,3),再?gòu)拇a頭P航行到碼頭Q(5,5),最后回到出發(fā)點(diǎn)O.請(qǐng)用“平移量”加法算式表示它的航行過(guò)程.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、已知正方形OABC各頂點(diǎn)坐標(biāo)為O(0,0),A(1,0),B(1,1),C(0,1),若P為坐標(biāo)平面上的點(diǎn),且△POA、△PAB、△PBC、△PCO都是等腰三角形,問(wèn)P點(diǎn)可能的不同位置數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的個(gè)數(shù)是( 。
①無(wú)理數(shù)都是無(wú)限小數(shù);   ②
(-2)2
的平方根是±2;  ③對(duì)角線互相垂直的菱形是正方形; 
a2
=(
a
)2
;          ⑤坐標(biāo)平面上的點(diǎn)與實(shí)數(shù)一一對(duì)應(yīng).
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

類比學(xué)習(xí):一動(dòng)點(diǎn)沿著數(shù)軸向右平移3個(gè)單位,再向左平移2個(gè)單位,相當(dāng)于向右平移1個(gè)單位.用實(shí)數(shù)加法表示為 3+(-2)=1.
若坐標(biāo)平面上的點(diǎn)作如下平移:沿x軸方向平移的數(shù)量為a(向右為正,向左為負(fù),平移|a|個(gè)單位),沿y軸方向平移的數(shù)量為b(向上為正,向下為負(fù),平移|b|個(gè)單位),則把有序數(shù)對(duì){a,b}叫做這一平移的“平移量”;“平移量”{a,b}與“平移量”{c,d}的加法運(yùn)算法則為{a,b}+{c,d}={a+c,b+d}.
解決問(wèn)題:
(1)計(jì)算:{3,1}+{1,2};{1,2}+{3,1}.
(2)①動(dòng)點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),先按照“平移量”{3,1}平移到A,再按照“平移量”{1,2}平移到B;若先把動(dòng)點(diǎn)P按照“平移量”{1,2}平移到C,再按照“平移量”{3,1}平移,最后的位置還是點(diǎn)B嗎?在圖精英家教網(wǎng)中畫出四邊形OABC.
②證明四邊形OABC是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,直線y1=k1x和反比例函數(shù)y2=
k2
x
的圖象都經(jīng)過(guò)點(diǎn)A(2,4)和點(diǎn)B,過(guò)A點(diǎn)作AE⊥x軸,垂足為E點(diǎn).
(1)則k1=
2
2
,k2=
8
8
S△AOE=
4
4
;
(2)根據(jù)圖象,寫出不等式k1x>
k2
x
的解集;
(3)P為x軸上的點(diǎn),且△POA是以O(shè)A為腰的等腰三角形,求出P點(diǎn)的坐標(biāo);
(4)Q為坐標(biāo)平面上的點(diǎn),且以點(diǎn)B、O、E、Q為頂點(diǎn)的四邊形是平行四邊形,直接寫出滿足條件的所有Q點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案