如圖所示,梯形AOCD中,∠AOC=90°,AD=9,OC=10,AO=4在線段OC上任取一點(diǎn)N(不與O、C重合),連接DN,作NE⊥DN,與直線AO交于點(diǎn)E.
(1)當(dāng)CN=2時(shí),求OE;
(2)若CN=t,OE=s,求s關(guān)于自變量t的函數(shù)關(guān)系式;
(3)探索與研究:如圖2所示,分別以AO、OC所在的直線為y軸與x軸,O為原點(diǎn),建立如圖所示的直角坐標(biāo)系,動(dòng)點(diǎn)M從點(diǎn)O沿線段OC向C點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)N從點(diǎn)C沿線段CO向點(diǎn)O同時(shí)等速運(yùn)動(dòng),設(shè)現(xiàn)有一點(diǎn)F(x,y)滿足MF⊥MN,NF⊥ND,試用含x的式子表示y.

解:(1)如圖所示,作DF⊥OC于F,
由題意知,CN=2,AD=9,OC=10.
∵AOCD是梯形且∠AOC=90°,
∴OF=AD=9,CF=OC-OF=1,NF=CN-CF=1,DF=OA=4.
∴在Rt△DFN中,tan∠DNF===4.
又∵NE⊥DN,∠AOC=90°,
∴∠DNF=∠OEN,tan∠OEN=tan∠DNF=4.
∴OE===2;

(2)如圖所示:
①當(dāng)0<t<1時(shí)由(1)知CF=1,所以此時(shí)N點(diǎn)在F點(diǎn)右側(cè),E點(diǎn)在y軸負(fù)半軸
∵∠DNF=∠OEN,
∴tan∠DNF===tan∠OEN==,
=,
∴s=
②當(dāng)t>1時(shí),如圖所示N點(diǎn)在F點(diǎn)左側(cè),E點(diǎn)則在y軸正半軸.
∵∠DNF=∠OEN,
∴tan∠DNF==tan∠OEN=
=,
∴S=

(3)如圖所示:由圖知點(diǎn)F在第四象限,
∵M(jìn)F⊥MN,NF⊥ND,點(diǎn)F(x,y),M點(diǎn)、N點(diǎn)同時(shí)等速運(yùn)動(dòng),
∴CN=OM=x.
又∵∠MFN+∠MNF=∠MNF+∠DNM=90°,
∴∠MFN=∠DNM,
即:tan∠MFN===tan∠DNM==,y<0,
∴y=
分析:由直角三角形的特性確定兩個(gè)相等的角方便之間的關(guān)系轉(zhuǎn)換,求s關(guān)于自變量t的函數(shù)關(guān)系式時(shí)要分清①0<t<1,②t>1兩種情況.
點(diǎn)評(píng):此題考查學(xué)生結(jié)合變化的圖象求函數(shù)關(guān)系式的能力,主要運(yùn)用直角三角形的特殊性質(zhì)和正切性質(zhì)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,梯形AOCD中,∠AOC=90°,AD=9,OC=10,AO=4在線段OC上任取一點(diǎn)N(不與O、C重合),連接DN,作NE⊥DN,與直線AO交于點(diǎn)E.
(1)當(dāng)CN=2時(shí),求OE;
(2)若CN=t,OE=s,求s關(guān)于自變量t的函數(shù)關(guān)系式;
(3)探索與研究:如圖2所示,分別以AO、OC所在的直線為y軸與x軸,O為原點(diǎn),建立如圖所示的直角坐標(biāo)系,動(dòng)點(diǎn)M從點(diǎn)O沿線段OC向C點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)N從點(diǎn)C沿線段CO向點(diǎn)O同時(shí)等速運(yùn)動(dòng),精英家教網(wǎng)設(shè)現(xiàn)有一點(diǎn)F(x,y)滿足MF⊥MN,NF⊥ND,試用含x的式子表示y.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖(1),在Rt△ABC的邊AB的同側(cè),分別以三邊為直徑作三個(gè)半圓,大半圓以外的兩部分面積分別為S1、S3,三角形的面積為S2
如圖(2),兩個(gè)反比例函數(shù)y=
2
x
y=
1
x
在第一象限內(nèi)的圖象如圖所示,點(diǎn)P在y=
2
x
的圖象上,PC⊥x軸于點(diǎn)C,PD⊥y軸于點(diǎn)D,交y=
1
x
的圖象于分別于點(diǎn)A,B,當(dāng)點(diǎn)P在y=
2
x
的圖象上運(yùn)動(dòng)時(shí),△BOD,四邊形OAPB,△AOC的面積分別為S1、S2、S3
如圖(3),點(diǎn)E為?ABCD邊AD上任意一點(diǎn),三個(gè)三角形的面積分別為S1、S2、S3;
如圖(4),梯形ABCD中,AB∥CD,∠DAB+∠ABC=90°,AB=2CD,以AD、DC、CB為邊作三個(gè)正方形的面積分別為S1、S2、S3
在這四個(gè)圖形中滿足S1+S3=S2
 
(填序號(hào)).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在如圖所示的直角坐標(biāo)系中,點(diǎn)C在y軸的正半軸上,四邊形OABC為平行四邊形,OA=2,∠AOC=60°,以O(shè)A為直徑的⊙P經(jīng)過(guò)點(diǎn)C,點(diǎn)D在y軸上,DM為始終與y軸垂直且與AB邊相交的動(dòng)直線,設(shè)DM與AB邊的交點(diǎn)為M(點(diǎn)M在線段AB上,但與精英家教網(wǎng)A、B兩點(diǎn)不重合),點(diǎn)N是DM與BC的交點(diǎn),設(shè)OD=t;
(1)求點(diǎn)A和B的坐標(biāo);
(2)設(shè)△BMN的外接圓⊙G的半徑為R,請(qǐng)你用t表示R及點(diǎn)G的坐標(biāo);
(3)當(dāng)⊙G與⊙P相外切時(shí),求直角梯形OAMD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在平面直角坐標(biāo)系中,四邊形OABC為梯形,且OA=AB=BC=4,∠AOC=60°,垂精英家教網(wǎng)直于x軸的直線l從y軸出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng)(運(yùn)動(dòng)到點(diǎn)C為止).
(1)求A、B兩點(diǎn)坐標(biāo);
(2)求當(dāng)t=
3
時(shí),△POQ的面積;
(3)直線l運(yùn)動(dòng)時(shí)間為t秒,它在梯形內(nèi)掃過(guò)的面積為S,求S和t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案