【題目】如圖,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分線,DE∥BA交AC于點E,DF∥CA交AB于點F,已知CD=3.
(1)求AD的長;
(2)求四邊形AEDF的周長.(注意:本題中的計算過程和結果均保留根號)
【答案】(1)6;(2).
【解析】
試題分析:(1)首先證明∠CAD=30°,易知AD=2CD即可解決問題;
(2)首先證明四邊形AEDF是菱形,求出ED即可解決問題;
試題解析:(1)∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠CAB=30°,在Rt△ACD中,∵∠ACD=90°,∠CAD=30°,∴AD=2CD=6.
(2)∵DE∥BA交AC于點E,DF∥CA交AB于點F,∴四邊形AEDF是平行四邊形,∵∠EAD=∠ADF=∠DAF,∴AF=DF,∴四邊形AEDF是菱形,∴AE=DE=DF=AF,在Rt△CED中,∵∠CDE=∠B=30°,∴DE= =,∴四邊形AEDF的周長為.
科目:初中數(shù)學 來源: 題型:
【題目】八年級(1)班學生在完成課題學習“體質(zhì)健康測試中的數(shù)據(jù)分析”后,利用課外活動時間積極參加體育鍛煉,每位同學從籃球、跳繩、立定跳遠、長跑、鉛球中選一項進行訓練,訓練后都進行了測試.現(xiàn)將項目選擇情況及訓練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.
請你根據(jù)上面提供的信息回答下列問題:
(1)扇形圖中跳繩部分的扇形圓心角為 度,該班共有學生 人, 訓練后籃球定時定點投籃平均每個人的進球數(shù)是 .
(2)老師決定從選擇鉛球訓練的3名男生和1名女生中任選兩名學生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)某學校“智慧方園”數(shù)學社團遇到這樣一個題目:
如圖1,在△ABC中,點O在線段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的長.
經(jīng)過社團成員討論發(fā)現(xiàn),過點B作BD∥AC,交AO的延長線于點D,通過構造△ABD就可以解決問題(如圖2).
請回答:∠ADB= °,AB= .
(2)請參考以上解決思路,解決問題:
如圖3,在四邊形ABCD中,對角線AC與BD相交于點O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系內(nèi),二次函數(shù)與一次函數(shù)(a,b為常數(shù),且).
(1)若y1,y2的圖象都經(jīng)過點(2,3),求y1,y2的表達式;
(2)當y2經(jīng)過點時,y1也過A,B兩點:
①求m的值;
②分別在y1,y2的圖象上,實數(shù)t使得“當或時,”,試求t的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=5,E是BC邊上的一個動點,DF⊥AE,垂足為點F,連結CF
(1)若AE=BC
①求證:△ABE≌△DFA;②求四邊形CDFE的周長;③求tan∠FCE的值;
(2)探究:當BE為何值時,△CDF是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,直線MN與AB、CD分別交于點E、F,FG平分∠EFD,EG⊥FG于點G,若∠CFN=110°,則∠BEG=( )
A. 20°B. 25°C. 35°D. 40°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校有3000名學生.為了解全校學生的上學方式,該校數(shù)學興趣小組以問卷調(diào)查的形式,隨機調(diào)查了該校部分學生的主要上學方式(參與問卷調(diào)查的學生只能從以下六個種類中選擇一類),并將調(diào)查結果繪制成如下不完整的統(tǒng)計圖.
種類 | A | B | C | D | E | F |
上學方式 | 電動車 | 私家車 | 公共交通 | 自行車 | 步行 | 其他 |
某校部分學生主要上學方式扇形統(tǒng)計圖某校部分學生主要上學方式條形統(tǒng)計圖
根據(jù)以上信息,回答下列問題:
(1)參與本次問卷調(diào)查的學生共有____人,其中選擇B類的人數(shù)有____人.
(2)在扇形統(tǒng)計圖中,求E類對應的扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖.
(3)若將A、C、D、E這四類上學方式視為“綠色出行”,請估計該校每天“綠色出行”的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線與拋物線相交于A,B兩點,且點A(1,-4)為拋物線的頂點,點B在x軸上。
(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點P,使△POB與△POC全等?若存在,求出點P的坐標;若不存在,請說明理由;
(3)若點Q是y軸上一點,且△ABQ為直角三角形,求點Q的坐標。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】八年級(1)班學生在完成課題學習“體質(zhì)健康測試中的數(shù)據(jù)分析”后,利用課外活動時間積極參加體育鍛煉,每位同學從籃球、跳繩、立定跳遠、長跑、鉛球中選一項進行訓練,訓練后都進行了測試.現(xiàn)將項目選擇情況及訓練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.
請你根據(jù)上面提供的信息回答下列問題:
(1)扇形圖中跳繩部分的扇形圓心角為 度,該班共有學生 人, 訓練后籃球定時定點投籃平均每個人的進球數(shù)是 .
(2)老師決定從選擇鉛球訓練的3名男生和1名女生中任選兩名學生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com