已知點A′與點A(-2,3)關(guān)于y軸對稱,直線y=kx-5經(jīng)過點A′,求直線的解析式,并畫出它的圖象.
∵A′與A(-2,3)關(guān)于y軸對稱,
∴A′(2,3),
∵直線y=kx-5經(jīng)過點A′,
∴3=2k-5,
∴k=4,
∴y=4x-5.
畫出圖象(只標出點A′位置的給1分).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,大拇指與小拇指盡量張開時,兩指尖的距離稱為指距.通過實驗觀察發(fā)現(xiàn),一般情況下人的身高h與指距d兩個變量的各對應(yīng)值如表:
指距d(cm)20212223
身高h(cm)160169178187
(1)判斷變量h,d是否近似地滿足一次函數(shù)關(guān)系?如果滿足,請求出h關(guān)于d的函數(shù)關(guān)系式;若不滿足,說明理由;
(2)某人身高為196cm,一般情況下他的指距應(yīng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖.
(1)根據(jù)圖象,求函數(shù)y=kx+b的解析式;
(2)在圖中畫出函數(shù)y=-2x+2的圖象;
(3)x______時,y=kx+b的函數(shù)值大于y=-2x+2的函數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,直線l:y=kx+b(k>0)與y軸相交于點A1,以O(shè)A1為邊作正方形OA1B1C1,記作第一個正方形;然后延長C1B1與直線相交于點A2,再以C1A2為邊作正方形C1A2B2C2,記作第二個正方形;同樣延長C2B2與直線相交于點A3,再以C2A3為邊作正方形C2A3B3C3,記作第三個正方形;…依此類推,又知B1(1,1),B2(3,2).
(1)求直線l的解析式;
(2)第三個正方形的邊長是多少?
(3)試推測第n個正方形的邊長為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一次函數(shù)y=kx+3中,當(dāng)x=2時,y=-3,那么當(dāng)x=-2時,y等于( 。
A.-1B.-3C.7D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,一次函數(shù)y1=-
2
3
x+2
與x軸、y軸分別相交于點A和點B,直線y2=kx+b(k≠0)經(jīng)過點C(1,0)且與線段AB交于點P,并把△ABO分成兩部分.
(1)求△ABO的面積;
(2)若△ABO被直線CP分成的兩部分的面積相等,求點P的坐標及直線CP的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,直線l是一次函數(shù)y=kx+b的圖象.
求:(1)這個函數(shù)的解析式;
(2)當(dāng)x=4時,y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某工廠用如圖所示的長方形和正方形紙板,做成如圖乙所示的豎式與橫式兩種長方體形狀的無蓋紙盒.
(1)現(xiàn)有正方形紙板162張,長方形紙板340張,若要做兩種紙盒共100個,設(shè)做豎式紙盒x個.
①根據(jù)題意,完成以下表格:
紙盒
紙板
豎式紙盒(個)橫式紙盒(個)
x100-x
正方形紙板(張)______2(100-x)
長方形紙板(張)4x______
②按兩種紙盒的生產(chǎn)個數(shù)來分,有哪幾種生產(chǎn)方案?
(2)若每個豎式紙盒獲利2元,橫式紙盒獲利3元,求上述哪種方案銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

“保護生態(tài)環(huán)境,建設(shè)綠色家園”已經(jīng)從理念變?yōu)槿藗兊男袆樱畵P州某地建立了綠色無公害蔬菜基地,現(xiàn)有甲、乙兩種植戶,他們種植了A、B兩類蔬菜,兩種植戶種植的兩類蔬菜的種植面積與總收入如下表:
種植戶種植A類蔬菜面積
(單位:畝)
種植B類蔬菜面積
(單位:畝)
總收入
(單位:元)
3112500
2316500
說明:不同種植戶種植的同類蔬菜每畝平均收入相等.
(1)求A、B兩類蔬菜每畝平均收入各是多少元?
(2)另有某種植戶準備租20畝地用來種植A、B兩類蔬菜,為了使總收入不低于63000元,且種植A類蔬菜的面積多于種植B類蔬菜的面積(兩類蔬菜的種植面積均為整數(shù)),求該種植戶所有租地方案.
(3)利用所學(xué)知識:直接寫出該種植戶收益最大的租地方案和最大收益.

查看答案和解析>>

同步練習(xí)冊答案