【題目】 小明和同學們對居住在“幸福小區(qū)”的部分居民每周戶外鍛煉天數(shù)情況進行了調(diào)查,并將調(diào)查的居民每周戶外鍛煉的天數(shù)按四個類別進行了統(tǒng)計.四個類別分別是A(每周鍛煉少于5天),B(每周鍛煉5天),C(每周鍛煉6天),D(每周鍛煉7天),小明和同學們將統(tǒng)計結果繪制成了如圖兩幅不完整的統(tǒng)計圖.
(1)調(diào)查的總人數(shù)為 人;
(2)扇形統(tǒng)計圖中C部分所對應的圓心角的度數(shù)為 °;
(3)求類別B的人數(shù),并補全條形統(tǒng)計圖;
(4)如果“幸福小區(qū)”共有1200名居民,請你估計該小區(qū)每周鍛煉7天的人數(shù)有多少人?
【答案】(1) (2);(3)18人,補全圖形見解析;(4)
【解析】
(1)根據(jù)A類的人數(shù)和所占的百分比即可求解;
(2)用360°乘以C部分所占的百分比即可;
(3)用總人數(shù)減去其它類的人數(shù)求出B類的人數(shù),從而補全統(tǒng)計圖;
(4)用總居民乘以每周鍛煉7天的人數(shù)所占的百分比即可.
解:(1)調(diào)查的總人數(shù)為:9÷1C部分5%=60(人),
故答案為:60;
(2)扇形統(tǒng)計圖中C部分所對應的圓心角的度數(shù)為:360°×=126°;
故答案為:126;
(3)B類的人數(shù)有:60﹣9﹣21﹣12=18(人),
補全統(tǒng)計圖如下:
(4)根據(jù)題意得:
1200×=240(人),
答:該小區(qū)每周鍛煉7天的人數(shù)有240人.
科目:初中數(shù)學 來源: 題型:
【題目】某水果店購進一批優(yōu)質(zhì)晚熟芒果,進價為10元/千克,售價不低于15元/千克,且不超過40元/千克,根據(jù)銷售情況發(fā)現(xiàn)該芒果在一天內(nèi)的銷售量y(千克)與該天的售價x(元/千克)之間滿足如表所示的一次函數(shù)關系:
(1)寫出銷售量y與售價x之間的函數(shù)關系式;
(2)設某天銷售這種芒果獲利W元,寫出W與售價x之間的函數(shù)關系式,并求出當售價為多少元時,當天的獲利最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】疫情突發(fā),危難時刻,從決定建造到交付使用,雷神山、火神山醫(yī)院僅用時十天,其建造速度之快,充分展現(xiàn)了中國基建的巨大威力!這樣的速度和動員能力就是全 國人民的堅定信心和盡快控制疫情的底氣!改革開放年來,中國已經(jīng)成為領先世界的基 建強國,如圖①是建筑工地常見的塔吊,其主體部分的平面示意圖如圖②,點在線段上運動,垂足為點的延長線交于點 ,經(jīng)測量,
(1)求線段的長度;(結果 精確到)
(2)連接,當線段時, 求點和點之間的距離.(結果 精確到,參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是⊙O內(nèi)接三角形,AB是⊙O的直徑,C是弧AF的中點,弦BC,AF相交于點E,在BC延長線上取點D,使得AD=AE.
(1)求證:AD是⊙O切線;
(2)若∠OEB=45°,求sin∠ABD的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】古希臘著名的畢達哥拉斯學派把1、3、6、10 …,這樣的數(shù)稱為“三角形數(shù)”,而把1、4、9、16…,這樣的數(shù)稱為“正方形數(shù)”.
(1)第5個三角形數(shù)是 ,第n個“三角形數(shù)”是 ,第5個“正方形數(shù)”是 ,第n個正方形數(shù)是 ;
(2)經(jīng)探究我們發(fā)現(xiàn):任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.
例如:①4=1+3,②9=3+6,③16=6+10,④ ,⑤ ,….
請寫出上面第4個和第5個等式;
(3)在(2)中,請?zhí)骄康?/span>n個等式,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,正方形ABCD的邊長為6,點E,點F分別在邊AB,AD上,AE=DF=2,連接DE,CF交于點G.連接AC與DE交于點M,延長CB至點K,使BK=3,連接GK交AB于點N.
(1)求證:CF⊥DE;
(2)求△AMD的面積;
(3)請直接寫出線段GN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D、O在△ABC的邊AC上,以CD為直徑的⊙O與邊AB相切于點E,連結DE、OB,且DE∥OB.
(1)求證:BC是⊙O的切線.
(2)設OB與⊙O交于點F,連結EF,若AD=OD,DE=4,求弦EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖像與軸分別交于兩點,與反比例函數(shù)的圖像交于點,點C在反比例函數(shù)的圖像上,過點C作軸于點D,連接,已知.
(1),點A的坐標為________________.
(2)點在線段上,連接,且,求點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AC∥DF,點B在AC上,點E在DF上,連結AE,BD相交于點P,連結CE,BF相交于點Q,若AB=EF,BC=DE.
(1)求證:四邊形BPEQ為平行四邊形;
(2)若DP=2BP,BF=3,CE=6.求證:四邊形BPEQ為菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com