【題目】某興趣小組開展課外活動.如圖,小明從點M出發(fā)以1.5米/秒的速度,沿射線MN方向勻速前進(jìn),2秒后到達(dá)點B,此時他(AB)在某一燈光下的影長為MB,繼續(xù)按原速行走2秒到達(dá)點D,此時他(CD)在同一燈光下的影子GD仍落在其身后,并測得這個影長GD為1.2米,然后他將速度提高到原來的1.5倍,再行走2秒到達(dá)點F,此時點A,C,E三點共線.
(1)請在圖中畫出光源O點的位置,并畫出小明位于點F時在這個燈光下的影長FH(不寫畫法);
(2)求小明到達(dá)點F時的影長FH的長.
【答案】(1)(3分+2分)畫圖見解析;(2)FH的長為1.5米.
【解析】
試題本題考查了中心投影:由同一點(點光源)發(fā)出的光線形成的投影叫做中心投影.如物體在燈光的照射下形成的影子就是中心投影.中心投影的光線特點是從一點出發(fā)的投射線.物體與投影面平行時的投影是放大(即位似變換)的關(guān)系.也考查了構(gòu)建相似三角形,利用相似三角形的性質(zhì)計算相應(yīng)線段的長.
(1)連結(jié)MA、GC并延長MA和GC,它們相交于點O,然后連結(jié)OE并延長交MN于H,則FH為小明位于點F時在這個燈光下的影長;
(2)先利用速度公式得到BM=BD=3m,DF=4.5m,設(shè)AB=CD=EF=a,作OK⊥MN于K,如圖,通過證明△MAB∽△MOK得到=①,通過證明△GCD∽△GOK得到=②,由①②得=,可求出Dk=2,原式得到=,FK=DF-DK=2.5,然后證明△HEF∽△HOK,利用相似比可計算出HF.
試題解析:解:(1)如圖,點O和FH為所作;
(2)BM=BD=2×1.5=3m,GD=1.2m,DF=1.5×1.5×2=4.5m,設(shè)AB=CD=EF=a,
作OK⊥MN于K,如圖,
∵AB∥OK,
∴△MAB∽△MOK,
∴=,即=①,
∵CD∥OK,
∴△GCD∽△GOK,
∴CDOK=GDGK,即=②,
由①②得=,解得Dk=2,
∴==,FK=DF-DK=4.5-2=2.5,
∵EF∥OK,
∴△HEF∽△HOK,
∴=,即=,
∴HF=1.5(m).
答:小明到達(dá)點F時的影長FH的長為1.5m.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=為反比例函數(shù).
(1)求k的值;
(2)它的圖象在第 象限內(nèi),在各象限內(nèi),y隨x增大而 ;(填變化情況)
(3)求出﹣2≤x≤﹣時,y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD是△ABC的角平分線,⊙O經(jīng)過A、B、D三點,過點B作BE∥AD,交⊙O于點E,連接ED.
(1)求證:ED∥AC;
(2)連接AE,試證明:ABCD=AEAC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某數(shù)學(xué)興趣小組的同學(xué)利用標(biāo)桿測量旗桿(AB)的高度:將一根5米高的標(biāo)桿(CD)豎在某一位置,有一名同學(xué)站在一處與標(biāo)桿、旗桿成一條直線,此時他看到標(biāo)桿頂端與旗桿頂端重合,另外一名同學(xué)測得站立的同學(xué)離標(biāo)桿3米,離旗桿30米.如果站立的同學(xué)的眼睛距地面(EF)1.6米,求旗桿的高度AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中間用相同的白色正方形瓷磚,四周用相同的黑色長方形瓷磚鋪設(shè)矩形地面,請觀察圖形并解答下列問題.
(1)問:依據(jù)規(guī)律在第6個圖中,黑色瓷磚多少塊,白色瓷磚有多少塊;
(2)某新學(xué)校教室要裝修,每間教室面積為68m2 , 準(zhǔn)備定制邊長為0.5米的正方形白色瓷磚和長為0.5米、寬為0.25米的長方形黑色瓷磚來鋪地面.按照此圖案方式進(jìn)行裝修,瓷磚無須切割,恰好完成鋪設(shè).已知白色瓷磚每塊20元,黑色瓷磚每塊10元,請問每間教室瓷磚共需要多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣2x經(jīng)過點P(﹣2,a),點P關(guān)于y軸的對稱點P′在反比例函數(shù)y=(k≠0)的圖象上.
(1)求反比例函數(shù)的解析式;
(2)直接寫出當(dāng)y<4時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=4cm,∠BAD=60°.動點E、F分別從點B、D同時出發(fā),以1cm/s的速度向點A、C運(yùn)動,連接AF、CE,取AF、CE的中點G、H,連接GE、FH.設(shè)運(yùn)動的時間為ts(0<t<4).
(1)求證:AF∥CE;
(2)當(dāng)t為何值時,四邊形EHFG為菱形;
(3)試探究:是否存在某個時刻t,使四邊形EHFG為矩形,若存在,求出t的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】瑞安市文化創(chuàng)意實踐學(xué)校是一所負(fù)責(zé)全市中小學(xué)生素質(zhì)教育綜合實踐活動的公益類事業(yè)單位,學(xué)校目前可開出:創(chuàng)意手工創(chuàng)意表演、科技制作(創(chuàng)客)、文化傳承、戶外拓展等5個類別20多個項目課程.
(1)學(xué)校3月份接待學(xué)生1000人,5月份增長到2560人,求該學(xué)校接待學(xué)生人數(shù)的平均月增長率是多少?
(2)在參加“創(chuàng)意手工”體驗課程后,小明發(fā)動本校同學(xué)將制作的作品義賣募捐.當(dāng)作品賣出的單價是2元時,每天義賣的數(shù)量是150件;當(dāng)作品的單價每漲高1元時,每天義賣的數(shù)量將減少10件.問:在作品單價盡可能便宜的前提下,當(dāng)單價定為多少元時,義賣所得的金額為600元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且﹣1<x1<0,對稱軸x=1.如圖所示,有下列5個結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實數(shù)).其中所有結(jié)論正確的是______(填寫番號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com