【題目】從共享單車(chē),共享汽車(chē)等共享出行到共享充電寶,共享雨傘等共享物品,各式各樣的共享經(jīng)濟(jì)模式在各個(gè)領(lǐng)域迅速普及應(yīng)用,越來(lái)越多的企業(yè)與個(gè)人成為參與者與受益者.小宇和小強(qiáng)分別對(duì)共享經(jīng)濟(jì)中的“共享出行”和“共享知識(shí)”最感興趣,他們上網(wǎng)查閱了相關(guān)資料,順便收集到四個(gè)共享經(jīng)濟(jì)領(lǐng)域的圖標(biāo),并將其制成編號(hào)為,,,的四張卡片(除編號(hào)和內(nèi)容外,其余完全相同)他們將這四張卡片背面朝上,洗勻放好,從中隨機(jī)抽取一張(不放回),再?gòu)闹须S機(jī)抽取一張,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求抽到的兩張卡片恰好是“共享出行”和“共享知識(shí)”的概率(這四張卡片分別用它們的編號(hào),,,表示)
【答案】抽到“共享出行”和“共享知識(shí)”的概率.
【解析】
根據(jù)題意先畫(huà)樹(shù)狀圖列出所有等可能結(jié)果數(shù)的,根據(jù)概率公式求解可得.
解:畫(huà)樹(shù)狀圖為:
共有12種等可能的結(jié)果數(shù),其中抽到“共享出行”和“共享知識(shí)”的結(jié)果數(shù)為2,
所以抽到“共享出行”和“共享知識(shí)”的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(已知:如圖所示的一張矩形紙片ABCD(AD>AB),將紙片折疊一次,使點(diǎn)A與點(diǎn)C重合,再展開(kāi),折痕EF交AD邊于點(diǎn)E,交BC邊于點(diǎn)F,分別連結(jié)AF和CE.
(1)求證:四邊形AFCE是菱形;
(2)若AE=10cm,△ABF的面積為24cm2,求△ABF的周長(zhǎng);
(3)在線(xiàn)段AC上是否存在一點(diǎn)P,使得2AE2=AC·AP?若存在,請(qǐng)說(shuō)明點(diǎn)P的位置,并予以證明;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為加快網(wǎng)絡(luò)建設(shè),某移動(dòng)通信公司在一個(gè)坡度為2∶1的山腰上建了一座垂直于水平面的信號(hào)通信塔,在距山腳處水平距離39米的點(diǎn)處測(cè)得通信塔底處的仰角是25°,通信塔頂處的仰角是42°.請(qǐng)求出通信塔的大約高度(結(jié)果保留整數(shù),參考數(shù)據(jù):,,,).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、BC上的點(diǎn),且DE∥AC,若S△BDE:S△CDE=1:4,則S△BDE:S△DAC=( )
A.1:25B.1:20C.1:18D.1:16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(9分)九年級(jí)數(shù)學(xué)興趣小組經(jīng)過(guò)市場(chǎng)調(diào)查,得到某種運(yùn)動(dòng)服每月的銷(xiāo)量與售價(jià)的相關(guān)信息如下表:
售價(jià)(元/件) | 100 | 110 | 120 | 130 | … |
月銷(xiāo)量(件) | 200 | 180 | 160 | 140 | … |
已知該運(yùn)動(dòng)服的進(jìn)價(jià)為每件60元,設(shè)售價(jià)為元.
(1)請(qǐng)用含x的式子表示:①銷(xiāo)售該運(yùn)動(dòng)服每件的利潤(rùn)是 元;②月銷(xiāo)量是 件;(直接寫(xiě)出結(jié)果)
(2)設(shè)銷(xiāo)售該運(yùn)動(dòng)服的月利潤(rùn)為元,那么售價(jià)為多少時(shí),當(dāng)月的利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:拋物線(xiàn)經(jīng)過(guò)點(diǎn).
(1)求的值;
(2)若,求c的值,
(3)在(2)的情況下,求這條拋物線(xiàn)的頂點(diǎn)坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)與軸、軸分別交于點(diǎn),,過(guò)點(diǎn)作直線(xiàn)軸,點(diǎn)為直線(xiàn)上的一個(gè)動(dòng)點(diǎn),以點(diǎn)為圓心,為半徑作圓,當(dāng)與直線(xiàn)相切時(shí),點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,直線(xiàn)y=與x軸、y軸分別交于點(diǎn)B,C,拋物線(xiàn)y=過(guò)B,C兩點(diǎn),且與x軸的另一個(gè)交點(diǎn)為點(diǎn)A,連接AC.
(1)求拋物線(xiàn)的解析式;
(2)在拋物線(xiàn)上是否存在點(diǎn)D(與點(diǎn)A不重合),使得S△DBC=S△ABC,若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)有寬度為2,長(zhǎng)度足夠長(zhǎng)的矩形(陰影部分)沿x軸方向平移,與y軸平行的一組對(duì)邊交拋物線(xiàn)于點(diǎn)P和點(diǎn)Q,交直線(xiàn)CB于點(diǎn)M和點(diǎn)N,在矩形平移過(guò)程中,當(dāng)以點(diǎn)P,Q,M,N為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,若將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°得到△EFC,連接AF、BE.
(1)求證:四邊形ABEF是平行四邊形;
(2)當(dāng)∠ABC為多少度時(shí),四邊形ABEF為矩形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com