某公司為一工廠代銷一種建筑材料(這里的代銷是指廠家先免費(fèi)提供貨源,待貨物售出后再進(jìn)行結(jié)算,未售出的由廠家負(fù)責(zé)處理).當(dāng)每噸售價(jià)為260元時(shí),月銷售量為45噸.該經(jīng)銷店為提高經(jīng)營利潤,準(zhǔn)備采取降價(jià)的方式進(jìn)行促銷.經(jīng)市場調(diào)查發(fā)現(xiàn):當(dāng)每噸售價(jià)每下降10元時(shí),月銷售量就會(huì)增加7.5噸.綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費(fèi)用100元.設(shè)每噸材料售價(jià)為x(元),該經(jīng)銷店的月利潤為y(元).
(1)當(dāng)每噸售價(jià)是240元時(shí),計(jì)算此時(shí)的月銷售量;
(2)求出y與x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(3)該經(jīng)銷店要獲得最大月利潤,售價(jià)應(yīng)定為每噸多少元?
(4)小靜說:“當(dāng)月利潤最大時(shí),月銷售額也最大.”你認(rèn)為對嗎?請說明理由.
分析:本題屬于市場營銷問題,月利潤=(每噸售價(jià)-每噸其它費(fèi)用)×銷售量,銷售量與每噸售價(jià)的關(guān)系要表達(dá)清楚.再用二次函數(shù)的性質(zhì)解決最大利潤問題.
解答:解:(1)由題意得:
45+
260-240
10
×7.5=60(噸).
(2)由題意:
y=(x-100)(45+
260-x
10
×7.5),
化簡得:y=-
3
4
x2+315x-24000.
(3)y=-
3
4
x2+315x-24000=-
3
4
(x-210)2+9075.
利達(dá)經(jīng)銷店要獲得最大月利潤,材料的售價(jià)應(yīng)定為每噸210元.
(4)我認(rèn)為,小靜說的不對.
理由:方法一:當(dāng)月利潤最大時(shí),x為210元,
而對于月銷售額W=x(45+
260-x
10
×7.5)=-
3
4
(x-160)2+19200來說,
當(dāng)x為160元時(shí),月銷售額W最大.
∴當(dāng)x為210元時(shí),月銷售額W不是最大.
∴小靜說的不對.
方法二:當(dāng)月利潤最大時(shí),x為210元,此時(shí),月銷售額為17325元;
而當(dāng)x為200元時(shí),月銷售額為18000元.∵17325<18000,
∴當(dāng)月利潤最大時(shí),月銷售額W不是最大.
∴小靜說的不對.
(說明:如果舉出其它反例,說理正確,也可以)
點(diǎn)評:本題考查了把實(shí)際問題轉(zhuǎn)化為二次函數(shù),再對二次函數(shù)進(jìn)行實(shí)際應(yīng)用.此題為數(shù)學(xué)建模題,借助二次函數(shù)解決實(shí)際問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某公司為一工廠代銷一種建筑材料(這里的代銷是指廠家先免費(fèi)提供貨源,待貨物售出后再進(jìn)行結(jié)算,未售出的由廠家負(fù)責(zé)處理).當(dāng)每噸售價(jià)為260元時(shí),月銷售量為45噸.該經(jīng)銷店為提高經(jīng)營利潤,準(zhǔn)備采取降價(jià)的方式進(jìn)行促銷.經(jīng)市場調(diào)查發(fā)現(xiàn):當(dāng)每噸售價(jià)每下降10元時(shí),月銷售量就會(huì)增加7.5噸.綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費(fèi)用100元.設(shè)每噸材料售價(jià)為x(元),該經(jīng)銷店的月利潤為y(元).
(1)當(dāng)每噸售價(jià)是240元時(shí),計(jì)算此時(shí)的月銷售量;
(2)求出y與x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(3)該經(jīng)銷店要獲得最大月利潤,售價(jià)應(yīng)定為每噸多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》?碱}集(17):2.6 何時(shí)獲得最大利潤(解析版) 題型:解答題

某公司為一工廠代銷一種建筑材料(這里的代銷是指廠家先免費(fèi)提供貨源,待貨物售出后再進(jìn)行結(jié)算,未售出的由廠家負(fù)責(zé)處理).當(dāng)每噸售價(jià)為260元時(shí),月銷售量為45噸.該經(jīng)銷店為提高經(jīng)營利潤,準(zhǔn)備采取降價(jià)的方式進(jìn)行促銷.經(jīng)市場調(diào)查發(fā)現(xiàn):當(dāng)每噸售價(jià)每下降10元時(shí),月銷售量就會(huì)增加7.5噸.綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費(fèi)用100元.設(shè)每噸材料售價(jià)為x(元),該經(jīng)銷店的月利潤為y(元).
(1)當(dāng)每噸售價(jià)是240元時(shí),計(jì)算此時(shí)的月銷售量;
(2)求出y與x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(3)該經(jīng)銷店要獲得最大月利潤,售價(jià)應(yīng)定為每噸多少元?
(4)小靜說:“當(dāng)月利潤最大時(shí),月銷售額也最大.”你認(rèn)為對嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(23):2.6 何時(shí)獲得最大利潤(解析版) 題型:解答題

某公司為一工廠代銷一種建筑材料(這里的代銷是指廠家先免費(fèi)提供貨源,待貨物售出后再進(jìn)行結(jié)算,未售出的由廠家負(fù)責(zé)處理).當(dāng)每噸售價(jià)為260元時(shí),月銷售量為45噸.該經(jīng)銷店為提高經(jīng)營利潤,準(zhǔn)備采取降價(jià)的方式進(jìn)行促銷.經(jīng)市場調(diào)查發(fā)現(xiàn):當(dāng)每噸售價(jià)每下降10元時(shí),月銷售量就會(huì)增加7.5噸.綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費(fèi)用100元.設(shè)每噸材料售價(jià)為x(元),該經(jīng)銷店的月利潤為y(元).
(1)當(dāng)每噸售價(jià)是240元時(shí),計(jì)算此時(shí)的月銷售量;
(2)求出y與x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(3)該經(jīng)銷店要獲得最大月利潤,售價(jià)應(yīng)定為每噸多少元?
(4)小靜說:“當(dāng)月利潤最大時(shí),月銷售額也最大.”你認(rèn)為對嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第27章《二次函數(shù)》?碱}集(19):27.3 實(shí)踐與探索(解析版) 題型:解答題

某公司為一工廠代銷一種建筑材料(這里的代銷是指廠家先免費(fèi)提供貨源,待貨物售出后再進(jìn)行結(jié)算,未售出的由廠家負(fù)責(zé)處理).當(dāng)每噸售價(jià)為260元時(shí),月銷售量為45噸.該經(jīng)銷店為提高經(jīng)營利潤,準(zhǔn)備采取降價(jià)的方式進(jìn)行促銷.經(jīng)市場調(diào)查發(fā)現(xiàn):當(dāng)每噸售價(jià)每下降10元時(shí),月銷售量就會(huì)增加7.5噸.綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費(fèi)用100元.設(shè)每噸材料售價(jià)為x(元),該經(jīng)銷店的月利潤為y(元).
(1)當(dāng)每噸售價(jià)是240元時(shí),計(jì)算此時(shí)的月銷售量;
(2)求出y與x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(3)該經(jīng)銷店要獲得最大月利潤,售價(jià)應(yīng)定為每噸多少元?
(4)小靜說:“當(dāng)月利潤最大時(shí),月銷售額也最大.”你認(rèn)為對嗎?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案