【題目】“端午節(jié)”期間,小明一家自駕游去了離家200km的某地,如圖是他們離家的距離y(km)與汽車行駛時(shí)間x(h)之間的函數(shù)圖象.根據(jù)圖象,解答下列問題:
(1)點(diǎn)A的實(shí)際意義是 ;
(2)求出線段AB的函數(shù)表達(dá)式;
(3)他們出發(fā)2.3h時(shí),距目的地還有多少km?
【答案】(1)當(dāng)汽車行駛到1h時(shí),汽車離家60km;(2)y=110x﹣50;(3)他們出發(fā)2.3h時(shí),離目的地還有12km.
【解析】
(1)根據(jù)圖象得出信息解答即可;
(2)根據(jù)圖象找出點(diǎn)的坐標(biāo),利用待定系數(shù)法即可求出函數(shù)解析式;
(3)將x=2.3代入得出的函數(shù)解析式中,得出y值,再用200-y即可得出結(jié)論.
解:(1)點(diǎn)A的實(shí)際意義是:當(dāng)汽車行駛到1h時(shí),汽車離家60km;
故答案為:當(dāng)汽車行駛到1h時(shí),汽車離家60km;
(2)設(shè)線段AB的函數(shù)表達(dá)式為y=kx+b.
∵A(1,60),B(2,170)都在線段AB上,
∴,
解得,
∴線段AB的函數(shù)表達(dá)式為y=110x﹣50.
(3)線段BC的函數(shù)表達(dá)式為y=60x+50(2≤x≤2.5).
∴當(dāng)x=2.3時(shí),y=60×2.3+50=188,
200﹣188=12.
∴他們出發(fā)2.3h時(shí),離目的地還有12km.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初二年級(jí)教師對(duì)試卷講評(píng)課中學(xué)生參與的深度與廣度進(jìn)行評(píng)價(jià)調(diào)查,其評(píng)價(jià)項(xiàng)目為主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng).評(píng)價(jià)組隨機(jī)抽取了若干名初二學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)圖中所給信息解答下列問題:
(1)在這次評(píng)價(jià)中,一共抽查了 名學(xué)生;
(2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目“主動(dòng)質(zhì)疑”所在的扇形的圓心角的度數(shù)為 度;
(3)請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整;
(4)如果全市有6000名初二學(xué)生,那么在試卷評(píng)講課中,“獨(dú)立思考”的初二學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的函數(shù)解析式為y=﹣2x+4,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過點(diǎn)A、B,直線l1、l2交于點(diǎn)C.
(1)求直線l2的函數(shù)解析式;
(2)求△ADC的面積;
(3)在直線l2上是否存在點(diǎn)P,使得△ADP面積是△ADC面積的2倍?如果存在,請(qǐng)求出P坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(2,0),B(6,0),CB⊥x軸于點(diǎn)B,連接AC
畫圖操作:
(1)在y正半軸上求作點(diǎn)P,使得∠APB=∠ACB(尺規(guī)作圖,保留作圖痕跡)
理解應(yīng)用:
(2)在(1)的條件下,
①若tan∠APB ,求點(diǎn)P的坐標(biāo)
②當(dāng)點(diǎn)P的坐標(biāo)為 時(shí),∠APB最大
拓展延伸:
(3)若在直線yx+4上存在點(diǎn)P,使得∠APB最大,求點(diǎn)P的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出
(1)如圖1,點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=a,AB=b,填空:當(dāng)點(diǎn)A位于 時(shí),線段AC的長(zhǎng)取得最大值,且最大值為 (用含a,b的式子表示).
問題探究
(2)點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=6,AB=3,如圖2所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE,找出圖中與BE相等的線段,請(qǐng)說明理由,并直接寫出線段BE長(zhǎng)的最大值.
問題解決:
(3)①如圖3,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(5,0),點(diǎn)P為線段AB外一動(dòng)點(diǎn),且PA=2,PM=PB,∠BPM=90°,求線段AM長(zhǎng)的最大值及此時(shí)點(diǎn)P的坐標(biāo).
②如圖4,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若對(duì)角線BD⊥CD于點(diǎn)D,請(qǐng)直接寫出對(duì)角線AC的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣3)(0≤x≤3),記為C1,它與x軸交于點(diǎn)O,A1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2,交x軸于點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3,交x軸于點(diǎn)A3;…如此進(jìn)行下去,直至得C17.
(1)寫出點(diǎn)的坐標(biāo)________
(2)若P(50,m)在第17段拋物線C17上,則m=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BO平分∠ABC,CO平分∠ACB,過點(diǎn)O作MN∥BC,分別交AB、AC于點(diǎn)M、N,若AB=12,△AMN的周長(zhǎng)為29,則AC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2(k+1)x+k2+2=0有兩個(gè)實(shí)根x1,x2.
(1)求實(shí)數(shù)k的取值范圍;
(2)若實(shí)數(shù)k能使x1﹣x2=2,求出k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=(m≠0,x<0)的圖象交于點(diǎn)A(﹣3,1)和點(diǎn)C,與y軸交于點(diǎn)B,△AOB的面積是6.
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)當(dāng)x<0時(shí),比較y1與y2的大;
(3)若點(diǎn)P(x,y)也在反比例函數(shù)y2=的圖象上,當(dāng)﹣4≤x≤﹣時(shí),求函數(shù)值y的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com