實數(shù)x、y、z、w滿足x≥y≥z≥w≥0,且5x+4y+3z+6w=100.求x+y+z+w的最大值和最小值
科目:初中數(shù)學(xué) 來源: 題型:
一艘觀光游船從港口A處以北偏東60°的方向出港觀光,航行80海里至 C處時發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號.一艘在港口正東方向B處的海警船接到求救信號,測得事故船在它的北偏東37°方向。
(1)求海警船距離事故船C的距離BC.
(2)若海警船以40海里/小時的速度前往救援,求海警船到達事故船C處大約所需的時間.(溫馨提示:sin 53°≈0.8,cos 53°≈0.6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
正方形ABCD中,點P從點C出發(fā)沿著正方形的邊依次經(jīng)過點D,A向終點B運動,運動的路程為x(cm),△PBC的面積為y(),y隨x變化的圖象可能是( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,正方形的邊長為2,以為圓心、為半徑作弧交于點,設(shè)弧與邊、圍成的陰影部分面積為;然后以為對角線作正方形,又以為圓心、為半徑作弧交于點,設(shè)弧與邊、圍成的陰影部分面積為;…,按此規(guī)律繼續(xù)作下去,設(shè)弧與邊、圍成的陰影部分面積為.則:(1)= ;(2)= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,二次函數(shù)y=-x2+bx+c的圖像經(jīng)過點A(4,0)B(-4,-4),且與y軸交于點C.
(1)求此二次函數(shù)的解析式;
(2)證明:∠BAO=∠CAO(其中O是原點);
(3)若P是線段AB上的一個動點(不與A、B重合),過P作y軸的平行線,分別交此二次函數(shù)圖像及x軸于Q、H兩點,試問:是否存在這樣的點 P,使PH=2QH?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
一個四位數(shù),其各位上的四個數(shù)字的平方和等于個位、千位數(shù)字乘積的2倍與十位、百位數(shù)字乘積的2倍之和,且個位與十位數(shù)字相同,符合上述條件的四位數(shù)共有 個。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
根據(jù)要求,解答下列問題:
(1)已知直線l1的函數(shù)表達式為,直接寫出:①過原點且與l1垂直的直線l2的函數(shù)表達式;②過點(1,0)且與l1垂直的直線l2的函數(shù)表達式;
(2)如圖,過點(1,0)的直線l4向上的方向與x軸的正方向所成的角為600,①求直線l4的函數(shù)表達式;②把直線l4繞點(1,0)按逆時針方向旋轉(zhuǎn)900得到的直線l5,求直線l5的函數(shù)表達式;
(3)分別觀察(1)(2)中的兩個函數(shù)表達式,請猜想:當(dāng)兩直線垂直時,它們的函數(shù)表達式中自變量的系數(shù)之間有何關(guān)系?請根據(jù)猜想結(jié)論直接寫出過點(1,0)且與直線垂直的直線l6的函數(shù)表達式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
若關(guān)于x的一元二次方程有實數(shù)根x1,x2,且x1≠x2,有下列結(jié)論:
①x1=1,x2=2; ②;
③二次函數(shù)y=的圖象與x軸交點的坐標為(1,0)和(2,0)。
其中,正確結(jié)論的個數(shù)是【 】
A.0 B.1 C.2 D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com