【題目】如圖所示,某辦公大樓正前方有一根高度是米的旗桿,從辦公樓頂端測得旗桿頂端的俯角,旗桿底端到大樓前梯坎底邊的距離米,梯坎坡長米,梯坎坡度,求大樓的高度.(精確到米,參與數(shù)據(jù): , ,

【答案】

【解析】延長ABDCH,作EGABG,則GH=DE=15EG=DH,設(shè)BH=x米,則CH=x米,在RtBCH中,BC=12,由勾股定理得出方程,解方程求出BH=6,CH=6,得出BGEG的長度,證明AEG是等腰直角三角形,得出AG=EG=6+20(米),即可得出大樓AB的高度.

解:在中, ,已知梯坎的坡度.(坡度)∴,由三角函數(shù)得,

由題意可知,四邊形為矩形.

在等腰中,

(米).

∴大樓的高度為米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,航拍無人機從A處測得一幢建筑物頂部B的仰角為45°,測得底部C的俯角為60°,此時航拍無人機與該建筑物的水平距離AD為110m,那么該建筑物的高度BC約為_____m(結(jié)果保留整數(shù),≈1.73).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6分)在一個不透明的口袋裝有三個完全相同的小球,分別標(biāo)號為1、2、3.求下列事件的概率:

1)從中任取一球,小球上的數(shù)字為偶數(shù);

2)從中任取一球,記下數(shù)字作為點A的橫坐標(biāo)x,把小球放回袋中,再從中任取一球記下數(shù)字作為點A的縱坐標(biāo)y,點Ax,y)在函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y關(guān)于x的函數(shù)表達式是,下列結(jié)論不正確的是(

A.,函數(shù)的最大值是5

B.,當(dāng)時,yx的增大而增大

C.無論a為何值時,函數(shù)圖象一定經(jīng)過點

D.無論a為何值時,函數(shù)圖象與x軸都有兩個交點

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ADBC邊上的中線,點EAD的中點,過點AAFBCBE的延長線于F,連接CF

(1)求證:△AEF≌△DEB;

(2)若∠BAC=90°,求證:四邊形ADCF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校大課間活動,采用了三種活動形式:足球,排球,籃球,學(xué)生選擇一種形式參與活動.

1)小王對同學(xué)們選用的活動形式進行了隨機抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計結(jié)果,列出了兩幅不完整的統(tǒng)計圖,利用圖中所提供的信息解決以下問題:①小王共調(diào)查統(tǒng)計了    人;②請將下圖補充完整.

2)假設(shè)被調(diào)查的甲、乙兩名同學(xué)對這三項活動的選擇是等可能的,請你用列表法或畫樹狀圖的方法求兩人中至少有一個選擇的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一個正方形紙片AOBC放置在平面直角坐標(biāo)系中,點A0,4),點O0,0),B40),C44)點.動點E在邊AO上,點F在邊BC上,沿EF折疊該紙片,使點O的對應(yīng)點M始終落在邊AC上(點M不與AC重合),點B落在點N處,MNBC交于點P

)如圖①,當(dāng)∠AEM30°時,求點E的坐標(biāo);

)如圖②,當(dāng)點M落在AC的中點時,求點E的坐標(biāo);

)隨著點MAC邊上位置的變化,△MPC的周長是否發(fā)生變化?如變化,簡述理由;如不變,直接寫出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系xOy中的圖形P和直線AB,給出如下定義:M為圖形P上任意一點,N為直線AB上任意一點,如果M,N兩點間的距離有最小值,那么稱這個最小值為圖形P和直線AB之間的確定距離,記作dP,直線AB).

已知A(2,0)B(0,2)

1)求d(點O,直線AB);

2)⊙T的圓心為半徑為1,若d(T,直線AB)≤1,直接寫出t的取值范圍;

3)記函數(shù)的圖象為圖形Q.若d(Q,直線AB)=1,直接寫出k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有甲,乙兩種機器人都被用來搬運某體育館室內(nèi)裝潢材料甲型機器人比乙型機器人每小時少搬運30千克,甲型機器人搬運600千克所用的時間與乙型機器人搬運800千克所用的時間相同,兩種機器人每小時分別搬運多少千克?設(shè)甲型機器人每小時搬運x千克,根據(jù)題意,可列方程為(  )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊答案