【題目】已知:如圖,E、FABCD的對角線AC上的兩點(diǎn),AFCE

求證:(1ABE≌△CDF;

2EDBF

【答案】1)見解析;(2)見解析

【解析】

1)根據(jù)已知條件得到AECF,根據(jù)平行四邊形的性質(zhì)得到∠DCF=∠BAE,根據(jù)全等三角形的判定定理即可得到結(jié)論;

2)根據(jù)全等三角形的性質(zhì)得到BEDF,∠AEB=∠CFD,根據(jù)平行四邊形的判定和性質(zhì)即可得到結(jié)論.

證明:(1)∵AFCE,

AFEFCEEF,

AECF,

∵四邊形ABCD是平行四邊形,

ABCD,ABCD,

∴∠DCF=∠BAE,

ABECDF中,

,

,

∴△ABE≌△CDFSAS);

2)∵△ABE≌△CDF,

BEDF,∠AEB=∠CFD

∴∠BEF=∠DFE,

BEDF,

∴四邊形DEBF是平行四邊形,

EDBF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形中,對角線、相交于點(diǎn),過點(diǎn)的直線分別交邊、、于點(diǎn)、

(1)如圖①,若四邊形是正方形,且,易知,又因?yàn)?/span>,所以(不要求證明)

(2)如圖②,若四邊形是矩形,且,若,,求的長(用含、的代數(shù)式表示);

(3)如圖③,若四邊形是平行四邊形,且,若,,,則   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖,在矩形ABCD.點(diǎn)O在邊AB上,∠AOC=BOD.求證:AO=OB.

2)如圖,AB的直徑,PA相切于點(diǎn)A,OP相交于點(diǎn)C,連接CB,OPA=40°,求∠ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=10(AB>AD),AD與BC之間的距離為6,點(diǎn)E在線段AB上移動(dòng),以E為圓心,AE長為半徑作⊙E.

(1)如圖1,若E是AB的中點(diǎn),求⊙E在AD所在的直線上截得的弦長;

(2)如圖2,若⊙E與BC所在的直線相切,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,a、b、c分別是∠A、∠B、∠C的對邊,下列條件不能判斷ABC是直角三角形的是( 。

A. b2c2a2B. abc345

C. A:∠B:∠C91215D. C=∠A﹣∠B

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一旅游團(tuán)來到某旅游景點(diǎn),看到售票處旁邊的公告欄上寫著:①一次購買10張以下(含10張),每張門票180元.②一次購買10張以上,超過10張的部分,每張門票6折優(yōu)惠.

1)若旅游團(tuán)人數(shù)為9人,門票費(fèi)用是多少?若旅游團(tuán)人數(shù)為30人,門票費(fèi)用又是多少?

2)設(shè)旅游團(tuán)人數(shù)為x人,寫出該旅游團(tuán)門票費(fèi)用y(元)與人數(shù)x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 yax2 過點(diǎn)(2,2)

(1)直接寫出拋物線的解析式;

(2)如圖,△ABC 的三個(gè)頂點(diǎn)都在拋物線 上,且邊 AC 所在的直線解析式為yx+b,若 AC 邊上的中線 BD 平行于 y 軸,求的值;

(3)如圖,點(diǎn) P 的坐標(biāo)為(0,2),點(diǎn) Q 為拋物線上 上一動(dòng)點(diǎn),以 PQ 為直徑作⊙M,直線 yt 與⊙M 相交于 H、K 兩點(diǎn)是否存在實(shí)數(shù) t,使得 HK 的長度為定值?若存在,求出 HK 的長度;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+3x+c經(jīng)過A(﹣1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)求拋物線的解析式;

(2)若點(diǎn)P在第一象限的拋物線上,且點(diǎn)P的橫坐標(biāo)為t,過點(diǎn)P向x軸作垂線交直線BC于點(diǎn)Q,設(shè)線段PQ的長為m,求m與t之間的函數(shù)關(guān)系式,并求出m的最大值;

(3)在x軸上是否存在點(diǎn)E,使以點(diǎn)B,C,E為頂點(diǎn)的三角形為等腰三角形?如果存在,直接寫出E點(diǎn)坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分9分)

為了考察甲、乙兩種成熟期小麥的株高長勢狀況,現(xiàn)從中各隨機(jī)抽取6株,并測得它們的株高(單位:cm)如下表所示:

63

66

63

61

64

61

63

65

60

63

64

63

(1)請分別計(jì)算表內(nèi)兩組數(shù)據(jù)的方差,并借此比較哪種小麥的株高長勢比較整齊?

(2)現(xiàn)將進(jìn)行兩種小麥優(yōu)良品種雜交試驗(yàn),需從表內(nèi)的甲、乙兩種小麥中,各隨機(jī)抽取一株進(jìn)行配對,以預(yù)估整體配對狀況.請你用列表法或畫樹狀圖的方法,求所抽取的兩株配對小麥株高恰好都等于各自平均株高的概率.

查看答案和解析>>

同步練習(xí)冊答案