24、如圖,點B在DC上,BE平分∠ABD,∠DBE=∠A,你能判斷BE與AC的位置關(guān)系嗎?請說明理由.
分析:欲證BE∥AC,在圖中發(fā)現(xiàn)BE、AC被直線AB所截,且已知BE平分∠ABD,∠DBE=∠A,故可按內(nèi)錯角相等兩直線平行判斷.
解答:解:BE∥AC.
理由:∵BE平分∠ABD,
∴∠DBE=∠ABE;
∵∠DBE=∠A,
∴∠ABE=∠A,
∴BE∥AC.
點評:解答此類要判定兩直線平行的題,可圍繞截線找同位角、內(nèi)錯角和同旁內(nèi)角.只有同位角相等、內(nèi)錯角相等、同旁內(nèi)角互補,才能推出兩被截直線平行.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料,并回答問題.
畫一個直角三角形,使它的兩條直角邊分別為5和12,那么我們可以量得直角三角形的斜邊長為13,并且52+122=132.事實上,在任何一個直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方.如果直角三角形中,兩直角邊長分別為a、b,斜邊長為c,則a2+b2=c2,這個結(jié)論就是著名的勾股定理.
請利用這個結(jié)論,完成下面的活動:
(1)一個直角三角形的兩條直角邊分別為6、8,那么這個直角三角形斜邊長為
10
10

(2)滿足勾股定理方程a2+b2=c2的正整數(shù)組(a,b,c)叫勾股數(shù)組.例如(3,4,5)就是一組勾股數(shù)組.觀察下列幾組勾股數(shù)
①3,4,5; ②5,12,13; ③7,24,25;④9,40,41;
請你寫出有以上規(guī)律的第⑤組勾股數(shù):
11,60,61
11,60,61

(3)如圖,AD⊥BC于D,AD=BD,AC=BE.AC=3,DC=1,求BD的長度.

(4)如圖,點A在數(shù)軸上表示的數(shù)是
-
5
-
5
,請用類似的方法在下圖數(shù)軸上畫出表示數(shù)
3
的B點(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學 來源:數(shù)學教研室 題型:044

如圖,點BDC上,BE平分ÐABD,ÐDBE=ÐA,則BEAC,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012年浙江省溫嶺市八年級第一學期四校期中聯(lián)考數(shù)學卷 題型:解答題

(13分)閱讀下列材料,并回答問題.

畫一個直角三角形,使它的兩條直角邊分別為5和12,那么我們可以量得直角三角形的斜邊長為13,并且。事實上,在任何一個直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方。如果直角三角形中,兩直角邊長分別為a、b,斜邊長為c,則,這個結(jié)論就是著名的勾股定理.

請利用這個結(jié)論,完成下面的活動:

(1)一個直角三角形的兩條直角邊分別為6、8,那么這個直角三角形斜邊長為           .

(2)滿足勾股定理方程的正整數(shù)組(a,b,c)叫勾股數(shù)組。例如(3,4,5)就是一組勾股數(shù)組。觀察下列幾組勾股數(shù)

 ① 3, 4, 5 ; ② 5,12,13 ; ③ 7,24,25 ;④ 9,40,41 ;

請你寫出有以上規(guī)律的第⑤組勾股數(shù):                   .

(3)如圖,AD⊥BC于D,AD=BD,AC=BE。AC=3,DC=1,求BD的長度.

(4)如圖,點A在數(shù)軸上表示的數(shù)是     ,請用類似的方法在下圖數(shù)軸上畫出表示數(shù)的B點(保留作圖痕跡).

 

  

 

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,點B在DC上,BE平分∠ABD,∠DBE=∠A,你能判斷BE與AC的位置關(guān)系嗎?請說明理由.

查看答案和解析>>

同步練習冊答案