【題目】在初三綜合素質(zhì)評定結(jié)束后,為了了解年級的評定情況,現(xiàn)對初三某班的學(xué)生進(jìn)行了評定等級的調(diào)查,繪制了如下男女生等級情況折線統(tǒng)計圖和全班等級情況扇形統(tǒng)計圖.
(1)調(diào)查發(fā)現(xiàn)評定等級為合格的男生有2人,女生有1人,則全班共有 名學(xué)生.
(2)補(bǔ)全女生等級評定的折線統(tǒng)計圖.
(3)根據(jù)調(diào)查情況,該班班主任從評定等級為合格和A的學(xué)生中各選1名學(xué)生進(jìn)行交流,請用樹形圖或表格求出剛好選中一名男生和一名女生的概率.
【答案】(1)50;(2)作圖見解析,(3)
【解析】試題分析:(1)根據(jù)合格的男生有2人,女生有1人,得出合格的總?cè)藬?shù),再根據(jù)評級合格的學(xué)生占6%,即可得出全班的人數(shù);
(2)根據(jù)折線統(tǒng)計圖和扇形統(tǒng)計圖以及全班的學(xué)生數(shù),即可得出女生評級3A的學(xué)生和女生評級4A的學(xué)生數(shù),即可補(bǔ)全折線統(tǒng)計圖;
(3)根據(jù)題意列舉出所有可能的情況,再根據(jù)概率公式求解即可.
(1)因?yàn)楹细竦哪猩?/span>2人,女生有1人,共計2+1=3人,
又因?yàn)樵u級合格的學(xué)生占6%,
所以全班共有:3÷6%=50(人);
(2)根據(jù)題意得:
女生評級3A的學(xué)生是:50×16%-3=8-3=5(人),
女生評級4A的學(xué)生是:50×50%-10=25-10=15(人),
(2)根據(jù)題意列表得:
∵共有12種等可能的結(jié)果數(shù),其中一名男生和一名女生的共有7種,
∴選中一名男生和一名女生的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠ACD=30°,BD=6,
求(1)∠BAD,∠ABC的度數(shù);
(2)求AB,AC的長;
(3)求菱形ABCD的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)△ABC(三角形頂點(diǎn)是網(wǎng)格線的交點(diǎn))和△A1B1C1,且△ABC與△A1B1C1,成中心對稱.
(1)畫出△ABC和△A1B1C1的對稱中心;
(2)將△A1B1C1沿直線方向向上平移6格,得到△A2B2C2,畫出△A2B2C2;
(3)將△A2B2C2繞點(diǎn)C2順時針方向旋轉(zhuǎn)90°,得到△A3B3C3,畫出△A3B3C3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD繞點(diǎn)C旋轉(zhuǎn)得到矩形FECG,點(diǎn)E在AD上,延長ED交FG于點(diǎn)H.
(1)求證:△EDC≌△HFE;
(2)連接BE、CH.
①四邊形BEHC是怎樣的特殊四邊形?證明你的結(jié)論.
②當(dāng)AB與BC的比值為 時,四邊形BEHC為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在以為原點(diǎn)的平面直角坐標(biāo)系中,有不在坐標(biāo)軸上的兩個點(diǎn)、,設(shè)的坐標(biāo)為,點(diǎn)的坐標(biāo)
(1)若與坐標(biāo)軸平行,則 ;
(2)若、、滿足和,軸,垂足為,軸,垂足為.
①求四邊形的面積;
②連、、,若的面積大于而不大于,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:如圖1,若,則.
理由:如圖,過點(diǎn)作,
則.
因?yàn)?/span>,
所以,
所以,
所以.
交流:(1)若將點(diǎn)移至圖2所示的位置,,此時、、之間有什么關(guān)系?請說明理由.
探究:(2)在圖3中,,、又有何關(guān)系?
應(yīng)用:(3)在圖4中,若,又得到什么結(jié)論?請直接寫出該結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=100°,∠ABC=∠ACB,點(diǎn)D在直線BC上運(yùn)動(不與點(diǎn)B、C重合),點(diǎn)E在射線AC上運(yùn)動,且∠ADE=∠AED,設(shè)∠DAC=n.
(1)如圖(1),當(dāng)點(diǎn)D在邊BC上時,且n=36°,則∠BAD= _________,∠CDE= _________.
(2)如圖(2),當(dāng)點(diǎn)D運(yùn)動到點(diǎn)B的左側(cè)時,其他條件不變,請猜想∠BAD和∠CDE的數(shù)量關(guān)系,并說明理由.
(3)當(dāng)點(diǎn)D運(yùn)動到點(diǎn)C的右側(cè)時,其他條件不變,∠BAD和∠CDE還滿足(2)中的數(shù)量關(guān)系嗎?請畫出圖形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有三個點(diǎn),是的邊上一點(diǎn),經(jīng)平移后得到,點(diǎn)的對應(yīng)點(diǎn)為.
(1)畫出平移后的,寫出點(diǎn)的坐標(biāo);
(2)的面積為_________________;
(3)若點(diǎn)是軸上一動點(diǎn),的面積為,求與之間的關(guān)系式(用含的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,過點(diǎn)的直線,為邊上一動點(diǎn)(不與,重合),過點(diǎn)作,交直線于點(diǎn),垂足為,連接,.
(1)求證:;
(2)當(dāng)移動到的什么位置時,四邊形是菱形?說明你的理由;
(3)若點(diǎn)移動到中點(diǎn),則當(dāng)的大小滿足什么條件時,四邊形是正方形?請說明你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com