【題目】在平面內(nèi)有∠AOB=60°,∠AOC=40°,OD是∠AOB的平分線,OE是∠AOC的平分線,求∠DOE的度數(shù).(請作圖解答)

【答案】DOE=50°10°

【解析】

根據(jù)角平分線的定義求得∠AOE和∠AOD的度數(shù)即可.

如圖1,∵∠AOB=60°,∠AOC=40°OD是∠AOB的平分線,OE是∠AOC的平分線,

∴∠AOE=AOC=20°,∠AOD=AOB=30°,

∴∠DOE=AOE+AOD=50°,

如圖2,∵∠AOB=60°,∠AOC=40°,OD是∠AOB的平分線,OE是∠AOC的平分線,

∴∠AOE=AOC=20°,∠AOD=AOB=30°,

∴∠DOE=AOD-AOE=10°

綜上所述,∠DOE=50°10°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個等腰三角形的周長為25cm.

(1)已知腰長是底邊長的2倍,求各邊的長;

(2)已知其中一邊的長為6cm.求其它兩邊的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了在即將到來的體育中考中取得好的成績,某校準(zhǔn)備在體育中考前將學(xué)校九年級的名學(xué)生送到體育館進(jìn)行一次模擬考試,經(jīng)學(xué)校和客車公司聯(lián)系了解到,輛大型客車和輛中型客車可載客人,輛大型客車和輛中型客車可載客人,若要將這些學(xué)生--次性全部送到體育館,且恰好裝滿.根據(jù)以上信息,回答下面問題:

1)每輛大型客車和中型客車各載多少人?

2)該校共有多少種租車方案?.

3)若每輛大型客車需租金元,每輛中型客車需租金元,請你給該校提供一個最省錢的租車建議,并求出最少租車費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形A1B1C1是由三角形ABC經(jīng)過平移得到的,其中A、B、C三點(diǎn)的對應(yīng)點(diǎn)分別是A1、B1、C1,它們在平面直角坐標(biāo)系中的坐標(biāo)如表所示:

三角形ABC

A0,0

B(﹣1,2

C25

三角形A1B1C1

A1a,2

B14b

C17,7

1)觀察表中各對應(yīng)點(diǎn)坐標(biāo)的變化,填空a=    ,b=    

2)在圖中的平面直角坐標(biāo)系中畫出三角形ABC及三角形A1B1C1;

3Pmn)為三角形ABC中任意一點(diǎn),則平移后對應(yīng)點(diǎn)P'的坐標(biāo)為    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級為了開展球類興趣小組,需要購買一批足球和籃球﹒若購買3個足球和5個籃球需580元;若購買4個足球和3個籃球需480元.

1)求出足球和籃球的的單價分別是多少?

2)已知該年級決定用800元購進(jìn)這兩種球,若兩種球都要有,請問有幾種購買方案,并請加以說明﹒

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,OE平分∠BOD,OF平分∠COE.AOC=COB,則∠BOF=_____°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形ABCD中,CE平分∠BCD且交AD于點(diǎn)E,A FCE,且交BC于點(diǎn)F

(1)求證:ABF≌△CDE;

(2)如圖,若∠1=65°,求∠B的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是由一些大小相同的小正方體組合成的簡單幾何體.根據(jù)要求完成下列題目.

1)正面圖中有______塊小正方體;

2)請在下面方格紙中分別畫出它的左視圖和俯視圖(畫出的圖都用鉛筆涂上陰影)

3)用小正方體搭一個幾何體,使得它的左視圖和俯視圖與你在(2)中所畫的圖一致,則這樣的幾何體最多要______塊小正方體.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周六上午,小亮去圖書館查資料,圖書館離家不遠(yuǎn),他步行去圖書館,查完資料后他又邊走邊轉(zhuǎn)去書店買書,在書店停留了幾分鐘后騎共享單車回家."已知小亮離家的距離()與離開家的時間()之間的關(guān)系如圖所示.請根據(jù)圖象回答下列問題:

1)小亮出發(fā)幾分鐘后到達(dá)圖書館?

2)小亮查完資料后步行的速度是多少?

3)小亮離開圖書館,幾點(diǎn)回到家?

查看答案和解析>>

同步練習(xí)冊答案