【題目】如圖,AC是圓O的直徑,AB、AD是圓O的弦,且AB=AD,連結(jié)BC、DC.
(1)求證:△ABC≌△ADC;
(2)延長(zhǎng)AB、DC交于點(diǎn)E,若EC=5cm,BC=3cm,求四邊形ABCD的面積.

【答案】
(1)證明:∵AC是圓O的直徑,

∴∠ABC=∠D=90°,

在Rt△ABC與Rt△ADC中,

,

∴Rt△ABC≌Rt△ADC


(2)證明:由(1)知Rt△ABC≌Rt△ADC,

∴CD=BC=3,AD=AB,

∴DE=5+3=8,

∵∠EAD=∠ECB,∠D=∠EBC=90°,

∴△EAD∽△ECB,

,

∵BE= =4,

∴AD=6,

∴四邊形ABCD的面積=SABC+SACD=2× ×3×6=18cm2


【解析】(1)由AC是圓O的直徑,得到∠ABC=∠D=90°,根據(jù)直角三角形全等的判定定理即可得到結(jié)論;(2)由(1)知Rt△ABC≌Rt△ADC,得到CD=BC=3,AD=AB,DE=5+3=8,通過(guò)△EAD∽△ECB,得到比例式 ,求得AD=6,即可得到結(jié)果.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A,B,C均在格點(diǎn)上.

(1)AB的長(zhǎng)等于;
(2)在△ABC的內(nèi)部有一點(diǎn)P,滿足SPAB:SPBC:SPCA=1:2:3,請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫出點(diǎn)P,并簡(jiǎn)要說(shuō)明點(diǎn)P的位置是如何找到的(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AE⊥CD,垂足為E,AF⊥BC,垂足為F,AD=4,BF=3,∠EAF=60°,設(shè) = ,如果向量 =k (k≠0),那么k的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°.AB=BC.點(diǎn)D是線段AB上的一點(diǎn),連結(jié)CD.過(guò)點(diǎn)B作BG⊥CD,分別交CD、CA于點(diǎn)E、F,與過(guò)點(diǎn)A且垂直于AB的直線相交于點(diǎn)G,連結(jié)DF,給出以下四個(gè)結(jié)論:① = ;②若點(diǎn)D是AB的中點(diǎn),則AF= AB;③當(dāng)B、C、F、D四點(diǎn)在同一個(gè)圓上時(shí),DF=DB;④若 = ,則SABC=9SBDF , 其中正確的結(jié)論序號(hào)是( )

A.①②
B.③④
C.①②③
D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m (am+b)(m≠1的實(shí)數(shù)).其中正確結(jié)論的有(
A.①②③
B.①③④
C.③④⑤
D.②③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列幾何體的主視圖既是中心對(duì)稱圖形又是軸對(duì)稱圖形的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC是圓O的直徑,AB、AD是圓O的弦,且AB=AD,連結(jié)BC、DC.
(1)求證:△ABC≌△ADC;
(2)延長(zhǎng)AB、DC交于點(diǎn)E,若EC=5cm,BC=3cm,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市建設(shè)森林城市需要大量的樹苗,某生態(tài)示范園負(fù)責(zé)對(duì)甲、乙、丙、丁四個(gè)品種的樹苗共500株進(jìn)行樹苗成活率試驗(yàn),從中選擇成活率高的品種進(jìn)行推廣.通過(guò)實(shí)驗(yàn)得知:丙種樹苗的成活率為89.6%,把實(shí)驗(yàn)數(shù)據(jù)繪制成下面兩幅統(tǒng)計(jì)圖(部分信息未給出).
(1)實(shí)驗(yàn)所用的乙種樹苗的數(shù)量是株.
(2)求出丙種樹苗的成活數(shù),并把圖2補(bǔ)充完整.
(3)你認(rèn)為應(yīng)選哪種樹苗進(jìn)行推廣?
(4)請(qǐng)通過(guò)計(jì)算說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知A、B是拋物線y=ax2(a>0)上兩個(gè)不同的點(diǎn),其中A在第二象限,B在第一象限,

(1)如圖1所示,當(dāng)直線AB與x軸平行,∠AOB=90°,且AB=2時(shí),求此拋物線的解析式和A、B兩點(diǎn)的橫坐標(biāo)的乘積.
(2)如圖2所示,在1所求得的拋物線上,當(dāng)直線AB與x軸不平行,∠AOB仍為90°時(shí),A、B兩點(diǎn)的橫坐標(biāo)的乘積是否為常數(shù)?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由.
(3)在2的條件下,若直線y=﹣2x﹣2分別交直線AB,y軸于點(diǎn)P、C,直線AB交y軸于點(diǎn)D,且∠BPC=∠OCP,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案