【題目】如圖,點(diǎn)O是等邊三角形ABC內(nèi)的一點(diǎn),∠BOC150°,將△BOC繞點(diǎn)C按順時(shí)針旋轉(zhuǎn)得到△ADC,連接OD,OA

(1)求∠ODC的度數(shù);

(2)若OB2,OC3,求AO的長(zhǎng).

【答案】(1)60°;(2)

【解析】

1)根據(jù)旋轉(zhuǎn)的性質(zhì)得到三角形ODC為等邊三角形即可求解;

2)在RtAOD中,由勾股定理即可求得AO的長(zhǎng).

1)由旋轉(zhuǎn)的性質(zhì)得:CD=CO,∠ACD=BCO

∵∠ACB=60°,∴∠DCO=60°,∴△OCD為等邊三角形,∴∠ODC=60°;

2)由旋轉(zhuǎn)的性質(zhì)得:AD=OB=2

∵△OCD為等邊三角形,∴OD=OC=3

∵∠BOC=150°,∠ODC=60°,∴∠ADO=90°.

RtAOD中,由勾股定理得:AO

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(閱讀理解)小海喜歡研究數(shù)學(xué)問題,在計(jì)算整式加減(﹣4x27+5x+2x+3x2)的時(shí)候,想到了小學(xué)的列豎式加減法,令A=﹣4x27+5xB2x+3x2,然后將兩個(gè)整式關(guān)于x進(jìn)行降冪排列,A=﹣4x2+5x7,B3x2+2x,最后只要寫出其各項(xiàng)系數(shù)對(duì)齊同類項(xiàng)進(jìn)行豎式計(jì)算如下:

所以,(﹣4x27+5x+2x+3x2)=﹣x2+7x7

(模仿解題)若A=﹣4x2y2+2x3y5xy3+2x4B3x3y+2x2y2y44xy3,請(qǐng)你按照小海的方法,先對(duì)整式A,B關(guān)于某個(gè)字母進(jìn)行降冪排列,再寫出其各項(xiàng)系數(shù)進(jìn)行豎式計(jì)算AB,并寫出AB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一家水果店以每千克2元的價(jià)格購(gòu)進(jìn)某種水果若干千克,然后以每千克4元的價(jià)格出售,每天可售出100千克,通過調(diào)查發(fā)現(xiàn),這種水果每千克的售價(jià)每降低1元,每天可多售出200千克.

1)若將這種水果每千克的售價(jià)降低元,則每天銷售量是多少千克?(結(jié)果用含的代數(shù)式表示)

2)若想每天盈利300元,且保證每天至少售出260千克,那么水果店需將每千克的售價(jià)降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA、OC分別在x軸、y軸的正半軸上,OA=4,OC=2.點(diǎn)P從點(diǎn)O出發(fā),沿x軸以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間是t秒.將線段CP的中點(diǎn)繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)90°得點(diǎn)D,點(diǎn)D隨點(diǎn)P的運(yùn)動(dòng)而運(yùn)動(dòng),連接DP、DA.

(1)請(qǐng)用含t的代數(shù)式表示出點(diǎn)D的坐標(biāo);

(2)求t為何值時(shí),DPA的面積最大,最大為多少?

(3)在點(diǎn)PO向A運(yùn)動(dòng)的過程中,DPA能否成為直角三角形?若能,求t的值.

若不能,請(qǐng)說明理由;

(4)請(qǐng)直接寫出隨著點(diǎn)P的運(yùn)動(dòng),點(diǎn)D運(yùn)動(dòng)路線的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖案中既是中心對(duì)稱圖形,又是軸對(duì)稱圖形的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形中,點(diǎn),分別是邊,上的點(diǎn),且.連接,過點(diǎn),使,連接,.

1)請(qǐng)判斷:的數(shù)量關(guān)系是________________,位置關(guān)系是___________________

2)如圖2,若點(diǎn),分別是邊,延長(zhǎng)線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)作出判斷并給予證明;

3)如圖3,若點(diǎn),分別是邊延長(zhǎng)線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)直接寫出你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,A, B是直線l上的兩點(diǎn),點(diǎn)B關(guān)于AD的對(duì)稱點(diǎn)為M,連接ADF點(diǎn).

1)若,如圖,

依題意補(bǔ)全圖形;

判斷MFFC的數(shù)量關(guān)系是

2)如圖,當(dāng)時(shí),CD的延長(zhǎng)線相交于點(diǎn)E,取E的中點(diǎn)H,連結(jié)HF. 用等式表示線段CEAF的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A(-5,0),B(-3,0),點(diǎn)C在y軸的正半軸上,∠CBO=45°,CD∥AB.∠CDA=90°.點(diǎn)P從點(diǎn)Q(4,0)出發(fā),沿x軸向左以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),運(yùn)動(dòng)時(shí)時(shí)間t秒.

(1)求點(diǎn)C的坐標(biāo);

(2)當(dāng)∠BCP=15°時(shí),求t的值;

(3)以點(diǎn)P為圓心,PC為半徑的⊙P隨點(diǎn)P的運(yùn)動(dòng)而變化,當(dāng)⊙P與四邊形ABCD的邊(或邊所在的直線)相切時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線 ABCD相交于O,OE是∠COB的平分線,OEOF.∠AOD74°

1)求∠BOE的度數(shù);

2)試說明OF平分∠AOC

查看答案和解析>>

同步練習(xí)冊(cè)答案