【題目】已知二次函數(shù)ykx2﹣(k+3x+3圖象的對稱軸為:直線x2

1)求該二次函數(shù)的表達(dá)式;

2)畫出該函數(shù)的圖象,并結(jié)合圖象直接寫出:

當(dāng)y0時(shí),自變量x的取值范圍;

當(dāng)0x3時(shí),y的取值范圍是多少?

【答案】1yx24x+3;(2)①1x31y3

【解析】

1)拋物線的對稱軸為:x,解得:k1,即可求解;

2從圖象看,y0時(shí),自變量x的取值范圍為:1x3;當(dāng)0x3時(shí),﹣1y3

解:(1)拋物線的對稱軸為:x,解得:k1

故拋物線的表達(dá)式為:yx24x+3;

2)拋物線的頂點(diǎn)為:(2,﹣1),令y0,則x13,

拋物線的表達(dá)式如下圖:

從圖象看,y0時(shí),自變量x的取值范圍為:1x3

當(dāng)0x3時(shí),﹣1y3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=-x2+4x+5

(1)用配方法將y=-x2+4x+5化成y=axh2+k的形式;

(2)指出拋物線的開口方向、對稱軸和頂點(diǎn)坐標(biāo);

(3)若拋物線上有兩點(diǎn)Ax1,y1),B(x2,y2),如果x1>x2>2,試比較y1y2的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣(x﹣1)2+4與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,CD∥x軸交拋物線于另一點(diǎn)D,連結(jié)AC,DE∥AC交邊CB于點(diǎn)E.

(1)求A,B兩點(diǎn)的坐標(biāo);

(2)求CDE與BAC的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為紀(jì)念建國70周年,某校舉行班級歌詠比賽,歌曲有:《我愛你,中國》,《歌唱祖國》,《我和我的祖國》(分別用字母A,B,C依次表示這三首歌曲).比賽時(shí),將A,BC這三個(gè)字母分別寫在3張無差別不透明的卡片正面上,洗勻后正面向下放在桌面上,八(1)班班長先從中隨機(jī)抽取一張卡片,放回后洗勻,再由八(2)班班長從中隨機(jī)抽取一張卡片,進(jìn)行歌詠比賽.

1)八(1)班抽中歌曲《我和我的祖國》的概率是__________

2)試用畫樹狀圖或列表的方法表示所有可能的結(jié)果,并求出八(1)班和八(2)班抽中不同歌曲的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為1個(gè)單位長度的小正方形組成的網(wǎng)格中,建立如圖所示的平面直角坐標(biāo)系ABC是格點(diǎn)三角形(頂點(diǎn)在網(wǎng)格線的交點(diǎn)上)

(1)先作ABC關(guān)于原點(diǎn)O成中心對稱的A1B1C1,再把A1B1C1向上平移4個(gè)單位長度得到A2B2C2;

(2)A2B2C2ABC是否關(guān)于某點(diǎn)成中心對稱?若是,直接寫出對稱中心的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AC,D三點(diǎn)的圓的圓心為E,過BE兩點(diǎn)的圓的圓心為D,如果∠A=60°,那么∠B________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某茶葉經(jīng)銷商以每千克18元的價(jià)格購進(jìn)一批寧波白茶鮮茶葉加工后出售, 已知加工過程中質(zhì)量損耗了40%, 該商戶對該茶葉試銷期間, 銷售單價(jià)不低于成本單價(jià),且每千克獲利不得高于成本單價(jià)的60%,經(jīng)試銷發(fā)現(xiàn),每天的銷售量y(千克)與銷售單價(jià)x(元/千克)符合一次函數(shù),且x=35時(shí),y=45;x=42時(shí),y=38

1)求一次函數(shù)的表達(dá)式;

2)若該商戶每天獲得利潤(不計(jì)加工費(fèi)用)W元,試寫出利潤W與銷售單價(jià)x之間的關(guān)系式;銷售單價(jià)每千克定為多少元時(shí),商戶每天可獲得最大利潤,最大利潤是多少元?

3)若該商戶每天獲得利潤不低于225元,試確定銷售單價(jià)x的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進(jìn)價(jià)為40元,若銷售價(jià)為60元,每天可售出20件,為迎接雙十一,專賣店決定采取適當(dāng)?shù)慕祪r(jià)措施,以擴(kuò)大銷售量,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價(jià)1元,那么平均可多售出2設(shè)每件童裝降價(jià)x時(shí),平均每天可盈利y元.

寫出yx的函數(shù)關(guān)系式;

當(dāng)該專賣店每件童裝降價(jià)多少元時(shí),平均每天盈利400元?

該專賣店要想平均每天盈利600元,可能嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線Lx軸與點(diǎn)A,交y軸與點(diǎn)B,點(diǎn)Cx軸正半軸上,且OC=2,點(diǎn)D在線段AC上,且∠CDB=ABC,過點(diǎn)CBC的垂線,交BD的延長線與點(diǎn)E,并聯(lián)結(jié)AE

1)求證:△CDB∽△CBA

2)求點(diǎn)E的坐標(biāo)

3)若點(diǎn)P是直線CE上的一動(dòng)點(diǎn),聯(lián)結(jié)DP若△DEP和△ABC相似,求點(diǎn)P的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊答案