【題目】已知二次函數(shù)y=kx2﹣(k+3)x+3圖象的對稱軸為:直線x=2.
(1)求該二次函數(shù)的表達(dá)式;
(2)畫出該函數(shù)的圖象,并結(jié)合圖象直接寫出:
①當(dāng)y<0時(shí),自變量x的取值范圍;
②當(dāng)0≤x<3時(shí),y的取值范圍是多少?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=-x2+4x+5.
(1)用配方法將y=-x2+4x+5化成y=a(x﹣h)2+k的形式;
(2)指出拋物線的開口方向、對稱軸和頂點(diǎn)坐標(biāo);
(3)若拋物線上有兩點(diǎn)A(x1,y1),B(x2,y2),如果x1>x2>2,試比較y1與y2的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣(x﹣1)2+4與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,CD∥x軸交拋物線于另一點(diǎn)D,連結(jié)AC,DE∥AC交邊CB于點(diǎn)E.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求△CDE與△BAC的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為紀(jì)念建國70周年,某校舉行班級歌詠比賽,歌曲有:《我愛你,中國》,《歌唱祖國》,《我和我的祖國》(分別用字母A,B,C依次表示這三首歌曲).比賽時(shí),將A,B,C這三個(gè)字母分別寫在3張無差別不透明的卡片正面上,洗勻后正面向下放在桌面上,八(1)班班長先從中隨機(jī)抽取一張卡片,放回后洗勻,再由八(2)班班長從中隨機(jī)抽取一張卡片,進(jìn)行歌詠比賽.
(1)八(1)班抽中歌曲《我和我的祖國》的概率是__________;
(2)試用畫樹狀圖或列表的方法表示所有可能的結(jié)果,并求出八(1)班和八(2)班抽中不同歌曲的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為1個(gè)單位長度的小正方形組成的網(wǎng)格中,建立如圖所示的平面直角坐標(biāo)系△ABC是格點(diǎn)三角形(頂點(diǎn)在網(wǎng)格線的交點(diǎn)上)
(1)先作△ABC關(guān)于原點(diǎn)O成中心對稱的△A1B1C1,再把△A1B1C1向上平移4個(gè)單位長度得到△A2B2C2;
(2)△A2B2C2與△ABC是否關(guān)于某點(diǎn)成中心對稱?若是,直接寫出對稱中心的坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】過A,C,D三點(diǎn)的圓的圓心為E,過B,E兩點(diǎn)的圓的圓心為D,如果∠A=60°,那么∠B為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某茶葉經(jīng)銷商以每千克18元的價(jià)格購進(jìn)一批寧波白茶鮮茶葉加工后出售, 已知加工過程中質(zhì)量損耗了40%, 該商戶對該茶葉試銷期間, 銷售單價(jià)不低于成本單價(jià),且每千克獲利不得高于成本單價(jià)的60%,經(jīng)試銷發(fā)現(xiàn),每天的銷售量y(千克)與銷售單價(jià)x(元/千克)符合一次函數(shù),且x=35時(shí),y=45;x=42時(shí),y=38.
(1)求一次函數(shù)的表達(dá)式;
(2)若該商戶每天獲得利潤(不計(jì)加工費(fèi)用)為W元,試寫出利潤W與銷售單價(jià)x之間的關(guān)系式;銷售單價(jià)每千克定為多少元時(shí),商戶每天可獲得最大利潤,最大利潤是多少元?
(3)若該商戶每天獲得利潤不低于225元,試確定銷售單價(jià)x的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進(jìn)價(jià)為40元,若銷售價(jià)為60元,每天可售出20件,為迎接“雙十一”,專賣店決定采取適當(dāng)?shù)慕祪r(jià)措施,以擴(kuò)大銷售量,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價(jià)1元,那么平均可多售出2件設(shè)每件童裝降價(jià)x元時(shí),平均每天可盈利y元.
寫出y與x的函數(shù)關(guān)系式;
當(dāng)該專賣店每件童裝降價(jià)多少元時(shí),平均每天盈利400元?
該專賣店要想平均每天盈利600元,可能嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線L:交x軸與點(diǎn)A,交y軸與點(diǎn)B,點(diǎn)C在x軸正半軸上,且OC=2,點(diǎn)D在線段AC上,且∠CDB=∠ABC,過點(diǎn)C作BC的垂線,交BD的延長線與點(diǎn)E,并聯(lián)結(jié)AE
(1)求證:△CDB∽△CBA
(2)求點(diǎn)E的坐標(biāo)
(3)若點(diǎn)P是直線CE上的一動(dòng)點(diǎn),聯(lián)結(jié)DP若△DEP和△ABC相似,求點(diǎn)P的坐標(biāo)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com